Discontinuous Galerkin Library
#include "dg/algorithm.h"
Loading...
Searching...
No Matches
elliptic.h
Go to the documentation of this file.
1#pragma once
2
3#include "blas.h"
4#include "enums.h"
5#include "backend/memory.h"
8#ifdef MPI_VERSION
10#endif
11#include "topology/geometry.h"
12
17namespace dg
18{
19 //TODO Elliptic can be made complex aware with a 2nd complex ContainerType
20// Note that there are many tests for this file : elliptic2d_b,
21// elliptic2d_mpib, elliptic_b, elliptic_mpib, ellipticX2d_b
22// And don't forget inc/geometries/elliptic3d_t (testing alignment and
23// projection tensors as Chi) geometry_elliptic_b, geometry_elliptic_mpib,
24// and geometryX_elliptic_b and geometryX_refined_elliptic_b
25
26
64template <class Geometry, class Matrix, class Container>
66{
67 public:
68 using geometry_type = Geometry;
69 using matrix_type = Matrix;
70 using container_type = Container;
73 Elliptic1d() = default;
85 Elliptic1d( const Geometry& g,
86 direction dir = forward, value_type jfactor=1.):
87 Elliptic1d( g, g.bcx(), dir, jfactor)
88 {
89 }
90
101 Elliptic1d( const Geometry& g, bc bcx,
102 direction dir = forward,
103 value_type jfactor=1.)
104 {
105 m_jfactor=jfactor;
106 dg::blas2::transfer( dg::create::dx( g, inverse( bcx), inverse(dir)), m_leftx);
107 dg::blas2::transfer( dg::create::dx( g, bcx, dir), m_rightx);
108 dg::blas2::transfer( dg::create::jumpX( g, bcx), m_jumpX);
109
110 dg::assign( dg::create::weights(g), m_weights);
111 dg::assign( dg::evaluate( dg::one, g), m_precond);
112 m_tempx = m_sigma = m_precond;
113 }
114
116 template<class ...Params>
117 void construct( Params&& ...ps)
118 {
119 //construct and swap
120 *this = Elliptic1d( std::forward<Params>( ps)...);
121 }
122
134 template<class ContainerType0>
135 void set_chi( const ContainerType0& sigma)
136 {
137 dg::blas1::copy( sigma, m_sigma);
138 //update preconditioner
139 dg::blas1::pointwiseDivide( 1., sigma, m_precond);
140 // sigma is possibly zero, which will invalidate the preconditioner
141 // it is important to call this blas1 function because it can
142 // overwrite NaN in m_precond in the next update
143 }
144
149 const Container& weights()const {
150 return m_weights;
151 }
160 const Container& precond()const {
161 return m_precond;
162 }
164 void set_jfactor( value_type new_jfactor) {m_jfactor = new_jfactor;}
166 value_type get_jfactor() const {return m_jfactor;}
168 template<class ContainerType0, class ContainerType1>
169 void operator()( const ContainerType0& x, ContainerType1& y){
170 symv( 1, x, 0, y);
171 }
172
174 template<class ContainerType0, class ContainerType1>
175 void symv( const ContainerType0& x, ContainerType1& y){
176 symv( 1, x, 0, y);
177 }
179 template<class ContainerType0, class ContainerType1>
180 void symv( value_type alpha, const ContainerType0& x, value_type beta, ContainerType1& y)
181 {
182 dg::blas2::gemv( m_rightx, x, m_tempx);
183 dg::blas1::pointwiseDot( m_tempx, m_sigma, m_tempx);
184 dg::blas2::symv( -alpha, m_leftx, m_tempx, beta, y);
185 //add jump terms
186 if( 0.0 != m_jfactor )
187 {
188 dg::blas2::symv( m_jfactor*alpha, m_jumpX, x, 1., y);
189 }
190 }
191
192 private:
193 Matrix m_leftx, m_rightx, m_jumpX;
194 Container m_weights, m_precond;
195 Container m_tempx;
196 Container m_sigma;
197 value_type m_jfactor;
198};
199
232template <class Geometry, class Matrix, class Container>
234{
235 public:
236 using geometry_type = Geometry;
237 using matrix_type = Matrix;
238 using container_type = Container;
241 Elliptic2d() = default;
257 Elliptic2d( const Geometry& g,
258 direction dir = forward, value_type jfactor=1., bool chi_weight_jump = false):
259 Elliptic2d( g, g.bcx(), g.bcy(), dir, jfactor, chi_weight_jump)
260 {
261 }
262
279 Elliptic2d( const Geometry& g, bc bcx, bc bcy,
280 direction dir = forward,
281 value_type jfactor=1., bool chi_weight_jump = false)
282 {
283 m_jfactor=jfactor;
284 m_chi_weight_jump = chi_weight_jump;
285 dg::blas2::transfer( dg::create::dx( g, inverse( bcx), inverse(dir)), m_leftx);
286 dg::blas2::transfer( dg::create::dy( g, inverse( bcy), inverse(dir)), m_lefty);
287 dg::blas2::transfer( dg::create::dx( g, bcx, dir), m_rightx);
288 dg::blas2::transfer( dg::create::dy( g, bcy, dir), m_righty);
289 dg::blas2::transfer( dg::create::jumpX( g, bcx), m_jumpX);
290 dg::blas2::transfer( dg::create::jumpY( g, bcy), m_jumpY);
291
292 dg::assign( dg::create::volume(g), m_weights);
293 dg::assign( dg::evaluate( dg::one, g), m_precond);
294 m_temp = m_tempx = m_tempy = m_weights;
295 m_chi=g.metric();
296 m_sigma = m_vol = dg::tensor::volume(m_chi);
297 }
298
300 template<class ...Params>
301 void construct( Params&& ...ps)
302 {
303 //construct and swap
304 *this = Elliptic2d( std::forward<Params>( ps)...);
305 }
306
323 template<class ContainerType0>
324 void set_chi( const ContainerType0& sigma)
325 {
326 dg::blas1::pointwiseDot( sigma, m_vol, m_sigma);
327 //update preconditioner
328 dg::blas1::pointwiseDivide( 1., sigma, m_precond);
329 // sigma is possibly zero, which will invalidate the preconditioner
330 // it is important to call this blas1 function because it can
331 // overwrite NaN in m_precond in the next update
332 }
346 template<class ContainerType0>
348 {
349 m_chi = SparseTensor<Container>(tau);
350 }
351
358 const Container& weights()const {
359 return m_weights;
360 }
369 const Container& precond()const {
370 return m_precond;
371 }
376 void set_jfactor( value_type new_jfactor) {m_jfactor = new_jfactor;}
381 value_type get_jfactor() const {return m_jfactor;}
386 void set_jump_weighting( bool jump_weighting) {m_chi_weight_jump = jump_weighting;}
391 bool get_jump_weighting() const {return m_chi_weight_jump;}
400 template<class ContainerType0, class ContainerType1>
401 void operator()( const ContainerType0& x, ContainerType1& y){
402 symv( 1, x, 0, y);
403 }
404
413 template<class ContainerType0, class ContainerType1>
414 void symv( const ContainerType0& x, ContainerType1& y){
415 symv( 1, x, 0, y);
416 }
427 template<class ContainerType0, class ContainerType1>
428 void symv( value_type alpha, const ContainerType0& x, value_type beta, ContainerType1& y)
429 {
430 //compute gradient
431 dg::blas2::gemv( m_rightx, x, m_tempx); //R_x*f
432 dg::blas2::gemv( m_righty, x, m_tempy); //R_y*f
433
434 //multiply with tensor (note the alias)
435 dg::tensor::multiply2d(m_sigma, m_chi, m_tempx, m_tempy, 0., m_tempx, m_tempy);
436
437 //now take divergence
438 dg::blas2::symv( m_lefty, m_tempy, m_temp);
439 dg::blas2::symv( -1., m_leftx, m_tempx, -1., m_temp);
440
441 //add jump terms
442 if( 0.0 != m_jfactor )
443 {
444 if(m_chi_weight_jump)
445 {
446 dg::blas2::symv( m_jfactor, m_jumpX, x, 0., m_tempx);
447 dg::blas2::symv( m_jfactor, m_jumpY, x, 0., m_tempy);
448 dg::tensor::multiply2d(m_sigma, m_chi, m_tempx, m_tempy, 0., m_tempx, m_tempy);
449 dg::blas1::axpbypgz(1.0,m_tempx,1.0,m_tempy,1.0,m_temp);
450 }
451 else
452 {
453 dg::blas2::symv( m_jfactor, m_jumpX, x, 1., m_temp);
454 dg::blas2::symv( m_jfactor, m_jumpY, x, 1., m_temp);
455 }
456 }
457 dg::blas1::pointwiseDivide( alpha, m_temp, m_vol, beta, y);
458 }
459
468 template<class ContainerType0, class ContainerType1>
469 void variation(const ContainerType0& phi, ContainerType1& sigma){
470 variation(1., 1., phi, 0., sigma);
471 }
481 template<class ContainerTypeL, class ContainerType0, class ContainerType1>
482 void variation(const ContainerTypeL& lambda, const ContainerType0& phi, ContainerType1& sigma){
483 variation(1.,lambda, phi, 0., sigma);
484 }
496 template<class ContainerTypeL, class ContainerType0, class ContainerType1>
497 void variation(value_type alpha, const ContainerTypeL& lambda, const ContainerType0& phi, value_type beta, ContainerType1& sigma)
498 {
499 dg::blas2::gemv( m_rightx, phi, m_tempx); //R_x*f
500 dg::blas2::gemv( m_righty, phi, m_tempy); //R_y*f
501 dg::tensor::scalar_product2d(alpha, lambda, m_tempx, m_tempy, m_chi, lambda, m_tempx, m_tempy, beta, sigma);
502 }
503
504
505 private:
506 Matrix m_leftx, m_lefty, m_rightx, m_righty, m_jumpX, m_jumpY;
507 Container m_weights, m_precond;
508 Container m_tempx, m_tempy, m_temp;
510 Container m_sigma, m_vol;
511 value_type m_jfactor;
512 bool m_chi_weight_jump;
513};
514
517template <class Geometry, class Matrix, class Container>
519
520//Elliptic3d is tested in inc/geometries/elliptic3d_t.cu
556template <class Geometry, class Matrix, class Container>
558{
559 public:
560 using geometry_type = Geometry;
561 using matrix_type = Matrix;
562 using container_type = Container;
565 Elliptic3d() = default;
577 Elliptic3d( const Geometry& g, direction dir = forward, value_type jfactor=1., bool chi_weight_jump = false):
578 Elliptic3d( g, g.bcx(), g.bcy(), g.bcz(), dir, jfactor, chi_weight_jump)
579 {
580 }
581
595 Elliptic3d( const Geometry& g, bc bcx, bc bcy, bc bcz, direction dir = forward, value_type jfactor = 1., bool chi_weight_jump = false)
596 {
597 // MW we should create an if guard for nx, ny, or nz = 1 and periodic boundaries
598 m_jfactor=jfactor;
599 m_chi_weight_jump = chi_weight_jump;
600 dg::blas2::transfer( dg::create::dx( g, inverse( bcx), inverse(dir)), m_leftx);
601 dg::blas2::transfer( dg::create::dy( g, inverse( bcy), inverse(dir)), m_lefty);
602 dg::blas2::transfer( dg::create::dx( g, bcx, dir), m_rightx);
603 dg::blas2::transfer( dg::create::dy( g, bcy, dir), m_righty);
604 dg::blas2::transfer( dg::create::jumpX( g, bcx), m_jumpX);
605 dg::blas2::transfer( dg::create::jumpY( g, bcy), m_jumpY);
606 if( g.nz() == 1)
607 {
608 dg::blas2::transfer( dg::create::dz( g, bcz, dg::centered), m_rightz);
610 m_addJumpZ = false;
611 }
612 else
613 {
614 dg::blas2::transfer( dg::create::dz( g, bcz, dir), m_rightz);
615 dg::blas2::transfer( dg::create::dz( g, inverse( bcz), inverse(dir)), m_leftz);
616 dg::blas2::transfer( dg::create::jumpZ( g, bcz), m_jumpZ);
617 m_addJumpZ = true;
618 }
619
620 dg::assign( dg::create::volume(g), m_weights);
621 dg::assign( dg::evaluate( dg::one, g), m_precond);
622 m_temp = m_tempx = m_tempy = m_tempz = m_weights;
623 m_chi=g.metric();
624 m_sigma = m_vol = dg::tensor::volume(m_chi);
625 }
627 template<class ...Params>
628 void construct( Params&& ...ps)
629 {
630 //construct and swap
631 *this = Elliptic3d( std::forward<Params>( ps)...);
632 }
633
635 template<class ContainerType0>
636 void set_chi( const ContainerType0& sigma)
637 {
638 dg::blas1::pointwiseDot( sigma, m_vol, m_sigma);
639 //update preconditioner
640 dg::blas1::pointwiseDivide( 1., sigma, m_precond);
641 // sigma is possibly zero, which will invalidate the preconditioner
642 // it is important to call this blas1 function because it can
643 // overwrite NaN in m_precond in the next update
644 }
645
647 template<class ContainerType0>
649 {
650 m_chi = SparseTensor<Container>(tau);
651 }
652
654 const Container& weights()const {
655 return m_weights;
656 }
658 const Container& precond()const {
659 return m_precond;
660 }
662 void set_jfactor( value_type new_jfactor) {m_jfactor = new_jfactor;}
664 value_type get_jfactor() const {return m_jfactor;}
666 void set_jump_weighting( bool jump_weighting) {m_chi_weight_jump = jump_weighting;}
668 bool get_jump_weighting() const {return m_chi_weight_jump;}
669
677 void set_compute_in_2d( bool compute_in_2d ) {
678 m_multiplyZ = !compute_in_2d;
679 }
680
682 template<class ContainerType0, class ContainerType1>
683 void symv( const ContainerType0& x, ContainerType1& y){
684 symv( 1, x, 0, y);
685 }
687 template<class ContainerType0, class ContainerType1>
688 void symv( value_type alpha, const ContainerType0& x, value_type beta, ContainerType1& y)
689 {
690 //compute gradient
691 dg::blas2::gemv( m_rightx, x, m_tempx); //R_x*f
692 dg::blas2::gemv( m_righty, x, m_tempy); //R_y*f
693 if( m_multiplyZ )
694 {
695 dg::blas2::gemv( m_rightz, x, m_tempz); //R_z*f
696
697 //multiply with tensor (note the alias)
698 dg::tensor::multiply3d(m_sigma, m_chi, m_tempx, m_tempy, m_tempz, 0., m_tempx, m_tempy, m_tempz);
699 //now take divergence
700 dg::blas2::symv( -1., m_leftz, m_tempz, 0., m_temp);
701 dg::blas2::symv( -1., m_lefty, m_tempy, 1., m_temp);
702 }
703 else
704 {
705 dg::tensor::multiply2d(m_sigma, m_chi, m_tempx, m_tempy, 0., m_tempx, m_tempy);
706 dg::blas2::symv( -1.,m_lefty, m_tempy, 0., m_temp);
707 }
708 dg::blas2::symv( -1., m_leftx, m_tempx, 1., m_temp);
709
710 //add jump terms
711 if( 0 != m_jfactor )
712 {
713 if(m_chi_weight_jump)
714 {
715 dg::blas2::symv( m_jfactor, m_jumpX, x, 0., m_tempx);
716 dg::blas2::symv( m_jfactor, m_jumpY, x, 0., m_tempy);
717 if( m_addJumpZ)
718 {
719 dg::blas2::symv( m_jfactor, m_jumpZ, x, 0., m_tempz);
720 dg::tensor::multiply3d(m_sigma, m_chi, m_tempx, m_tempy,
721 m_tempz, 0., m_tempx, m_tempy, m_tempz);
722 }
723 else
724 dg::tensor::multiply2d(m_sigma, m_chi, m_tempx, m_tempy,
725 0., m_tempx, m_tempy);
726
727 dg::blas1::axpbypgz(1., m_tempx, 1., m_tempy, 1., m_temp);
728 if( m_addJumpZ)
729 dg::blas1::axpby( 1., m_tempz, 1., m_temp);
730 }
731 else
732 {
733 dg::blas2::symv( m_jfactor, m_jumpX, x, 1., m_temp);
734 dg::blas2::symv( m_jfactor, m_jumpY, x, 1., m_temp);
735 if( m_addJumpZ)
736 dg::blas2::symv( m_jfactor, m_jumpZ, x, 1., m_temp);
737 }
738 }
739 dg::blas1::pointwiseDivide( alpha, m_temp, m_vol, beta, y);
740 }
741
743 template<class ContainerType0, class ContainerType1>
744 void variation(const ContainerType0& phi, ContainerType1& sigma){
745 variation(1.,1., phi, 0., sigma);
746 }
748 template<class ContainerTypeL, class ContainerType0, class ContainerType1>
749 void variation(const ContainerTypeL& lambda, const ContainerType0& phi, ContainerType1& sigma){
750 variation(1.,lambda, phi, 0., sigma);
751 }
753 template<class ContainerTypeL, class ContainerType0, class ContainerType1>
754 void variation(value_type alpha, const ContainerTypeL& lambda, const ContainerType0& phi, value_type beta, ContainerType1& sigma)
755 {
756 dg::blas2::gemv( m_rightx, phi, m_tempx); //R_x*f
757 dg::blas2::gemv( m_righty, phi, m_tempy); //R_y*f
758 if( m_multiplyZ)
759 dg::blas2::gemv( m_rightz, phi, m_tempz); //R_y*f
760 else
761 dg::blas1::scal( m_tempz, 0.);
762 dg::tensor::scalar_product3d(alpha, lambda, m_tempx, m_tempy, m_tempz, m_chi, lambda, m_tempx, m_tempy, m_tempz, beta, sigma);
763 }
764
765 private:
766 Matrix m_leftx, m_lefty, m_leftz, m_rightx, m_righty, m_rightz, m_jumpX, m_jumpY, m_jumpZ;
767 Container m_weights, m_precond;
768 Container m_tempx, m_tempy, m_tempz, m_temp;
770 Container m_sigma, m_vol;
771 value_type m_jfactor;
772 bool m_multiplyZ = true, m_addJumpZ = false;
773 bool m_chi_weight_jump;
774};
776template< class G, class M, class V>
777struct TensorTraits< Elliptic1d<G, M, V> >
778{
780 using tensor_category = SelfMadeMatrixTag;
781};
782template< class G, class M, class V>
783struct TensorTraits< Elliptic2d<G, M, V> >
784{
786 using tensor_category = SelfMadeMatrixTag;
787};
788
789template< class G, class M, class V>
790struct TensorTraits< Elliptic3d<G, M, V> >
791{
793 using tensor_category = SelfMadeMatrixTag;
794};
796
797} //namespace dg
A 1d negative elliptic differential operator .
Definition elliptic.h:66
Container container_type
Definition elliptic.h:70
void operator()(const ContainerType0 &x, ContainerType1 &y)
Compute elliptic term and store in output.
Definition elliptic.h:169
void set_jfactor(value_type new_jfactor)
Set the currently used jfactor ( )
Definition elliptic.h:164
const Container & precond() const
Return the default preconditioner to use in conjugate gradient.
Definition elliptic.h:160
Elliptic1d(const Geometry &g, direction dir=forward, value_type jfactor=1.)
Construct from Grid.
Definition elliptic.h:85
Elliptic1d(const Geometry &g, bc bcx, direction dir=forward, value_type jfactor=1.)
Construct from grid and boundary conditions.
Definition elliptic.h:101
Elliptic1d()=default
empty object ( no memory allocation)
const Container & weights() const
Return the weights making the operator self-adjoint.
Definition elliptic.h:149
Geometry geometry_type
Definition elliptic.h:68
void symv(value_type alpha, const ContainerType0 &x, value_type beta, ContainerType1 &y)
Compute elliptic term and add to output.
Definition elliptic.h:180
void set_chi(const ContainerType0 &sigma)
Change scalar part Chi.
Definition elliptic.h:135
get_value_type< Container > value_type
Definition elliptic.h:71
Matrix matrix_type
Definition elliptic.h:69
void symv(const ContainerType0 &x, ContainerType1 &y)
Compute elliptic term and store in output.
Definition elliptic.h:175
void construct(Params &&...ps)
Perfect forward parameters to one of the constructors.
Definition elliptic.h:117
value_type get_jfactor() const
Get the currently used jfactor ( )
Definition elliptic.h:166
A 2d negative elliptic differential operator .
Definition elliptic.h:234
void set_jfactor(value_type new_jfactor)
Set the currently used jfactor ( )
Definition elliptic.h:376
void symv(const ContainerType0 &x, ContainerType1 &y)
Compute elliptic term and store in output.
Definition elliptic.h:414
get_value_type< Container > value_type
Definition elliptic.h:239
void operator()(const ContainerType0 &x, ContainerType1 &y)
Compute elliptic term and store in output.
Definition elliptic.h:401
Matrix matrix_type
Definition elliptic.h:237
void construct(Params &&...ps)
Perfect forward parameters to one of the constructors.
Definition elliptic.h:301
const Container & weights() const
Return the weights making the operator self-adjoint.
Definition elliptic.h:358
void set_jump_weighting(bool jump_weighting)
Set the chi weighting of jump terms.
Definition elliptic.h:386
void set_chi(const ContainerType0 &sigma)
Change scalar part in Chi tensor.
Definition elliptic.h:324
void variation(value_type alpha, const ContainerTypeL &lambda, const ContainerType0 &phi, value_type beta, ContainerType1 &sigma)
Definition elliptic.h:497
Elliptic2d(const Geometry &g, direction dir=forward, value_type jfactor=1., bool chi_weight_jump=false)
Construct from Grid.
Definition elliptic.h:257
Elliptic2d()=default
empty object ( no memory allocation)
const Container & precond() const
Return the default preconditioner to use in conjugate gradient.
Definition elliptic.h:369
Geometry geometry_type
Definition elliptic.h:236
void symv(value_type alpha, const ContainerType0 &x, value_type beta, ContainerType1 &y)
Compute elliptic term and add to output.
Definition elliptic.h:428
void variation(const ContainerTypeL &lambda, const ContainerType0 &phi, ContainerType1 &sigma)
Definition elliptic.h:482
void set_chi(const SparseTensor< ContainerType0 > &tau)
Change tensor part in Chi tensor.
Definition elliptic.h:347
value_type get_jfactor() const
Get the currently used jfactor ( )
Definition elliptic.h:381
Elliptic2d(const Geometry &g, bc bcx, bc bcy, direction dir=forward, value_type jfactor=1., bool chi_weight_jump=false)
Construct from grid and boundary conditions.
Definition elliptic.h:279
void variation(const ContainerType0 &phi, ContainerType1 &sigma)
Definition elliptic.h:469
Container container_type
Definition elliptic.h:238
bool get_jump_weighting() const
Get the current state of chi weighted jump terms.
Definition elliptic.h:391
A 3d negative elliptic differential operator .
Definition elliptic.h:558
void variation(const ContainerTypeL &lambda, const ContainerType0 &phi, ContainerType1 &sigma)
Definition elliptic.h:749
const Container & precond() const
Return the default preconditioner to use in conjugate gradient.
Definition elliptic.h:658
void symv(value_type alpha, const ContainerType0 &x, value_type beta, ContainerType1 &y)
Compute elliptic term and add to output.
Definition elliptic.h:688
void variation(const ContainerType0 &phi, ContainerType1 &sigma)
Definition elliptic.h:744
void set_chi(const SparseTensor< ContainerType0 > &tau)
Change tensor part in Chi tensor.
Definition elliptic.h:648
void variation(value_type alpha, const ContainerTypeL &lambda, const ContainerType0 &phi, value_type beta, ContainerType1 &sigma)
Definition elliptic.h:754
void construct(Params &&...ps)
Perfect forward parameters to one of the constructors.
Definition elliptic.h:628
get_value_type< Container > value_type
Definition elliptic.h:563
value_type get_jfactor() const
Get the currently used jfactor ( )
Definition elliptic.h:664
void set_jfactor(value_type new_jfactor)
Set the currently used jfactor ( )
Definition elliptic.h:662
Elliptic3d()=default
empty object ( no memory allocation)
const Container & weights() const
Return the weights making the operator self-adjoint.
Definition elliptic.h:654
Elliptic3d(const Geometry &g, bc bcx, bc bcy, bc bcz, direction dir=forward, value_type jfactor=1., bool chi_weight_jump=false)
Construct from grid and boundary conditions.
Definition elliptic.h:595
void set_compute_in_2d(bool compute_in_2d)
Restrict the problem to the first 2 dimensions.
Definition elliptic.h:677
void set_chi(const ContainerType0 &sigma)
Change scalar part in Chi tensor.
Definition elliptic.h:636
Elliptic3d(const Geometry &g, direction dir=forward, value_type jfactor=1., bool chi_weight_jump=false)
Construct from Grid.
Definition elliptic.h:577
void symv(const ContainerType0 &x, ContainerType1 &y)
Compute elliptic term and store in output.
Definition elliptic.h:683
void set_jump_weighting(bool jump_weighting)
Set the chi weighting of jump terms.
Definition elliptic.h:666
Container container_type
Definition elliptic.h:562
Matrix matrix_type
Definition elliptic.h:561
Geometry geometry_type
Definition elliptic.h:560
bool get_jump_weighting() const
Get the current state of chi weighted jump terms.
Definition elliptic.h:668
enums
Function discretization routines.
DG_DEVICE T one(T x, Ts ...xs)
Definition functions.h:24
void copy(const ContainerTypeIn &source, ContainerTypeOut &target)
Definition blas1.h:243
void axpbypgz(value_type alpha, const ContainerType1 &x, value_type1 beta, const ContainerType2 &y, value_type2 gamma, ContainerType &z)
Definition blas1.h:337
void axpby(value_type alpha, const ContainerType1 &x, value_type1 beta, ContainerType &y)
Definition blas1.h:306
void pointwiseDot(value_type alpha, const ContainerType1 &x1, const ContainerType2 &x2, value_type1 beta, ContainerType &y)
Definition blas1.h:406
void assign(const from_ContainerType &from, ContainerType &to, Params &&... ps)
Generic way to assign the contents of a from_ContainerType object to a ContainerType object optionall...
Definition blas1.h:767
void scal(ContainerType &x, value_type alpha)
Definition blas1.h:263
void pointwiseDivide(value_type alpha, const ContainerType1 &x1, const ContainerType2 &x2, value_type1 beta, ContainerType &y)
Definition blas1.h:495
void gemv(get_value_type< ContainerType1 > alpha, MatrixType &&M, const ContainerType1 &x, get_value_type< ContainerType1 > beta, ContainerType2 &y)
Alias for blas2::symv ;.
Definition blas2.h:339
void transfer(const MatrixType &x, AnotherMatrixType &y)
; Generic way to copy and/or convert a Matrix type to a different Matrix type
Definition blas2.h:473
void symv(MatrixType &&M, const ContainerType1 &x, ContainerType2 &y)
Definition blas2.h:325
auto dx(const Topology &g, dg::bc bc, dg::direction dir=centered)
Definition derivativesT.h:14
auto dy(const Topology &g, dg::bc bc, dg::direction dir=centered)
Short for dg::create::derivative( 1, g, bc, dir);
Definition derivativesT.h:21
auto jumpY(const Topology &g, bc bc)
Short for dg::create::jump( 1, g, bc);
Definition derivativesT.h:43
bc
Switch between boundary conditions.
Definition enums.h:15
auto jumpZ(const Topology &g, bc bc)
Short for dg::create::jump( 2, g, bc);
Definition derivativesT.h:50
direction
Direction of a discrete derivative.
Definition enums.h:97
auto dz(const Topology &g, dg::bc bc, dg::direction dir=centered)
Short for dg::create::derivative( 2, g, bc, dir);
Definition derivativesT.h:28
bc inverse(bc bound)
invert boundary condition
Definition enums.h:87
auto jumpX(const Topology &g, bc bc)
Short for dg::create::jump( 0, g, bc);
Definition derivativesT.h:36
@ forward
forward derivative (cell to the right and current cell)
Definition enums.h:98
@ centered
centered derivative (cell to the left and right and current cell)
Definition enums.h:100
@ y
y direction
@ x
x direction
typename TensorTraits< std::decay_t< Vector > >::value_type get_value_type
Definition tensor_traits.h:45
auto weights(const Topology &g)
Nodal weight coefficients.
Definition weights.h:62
auto evaluate(Functor &&f, const Topology &g)
Evaluate a function on grid coordinates
Definition evaluation.h:74
Geometry::host_vector volume(const Geometry &g)
Create the volume element on the grid (including weights!!)
Definition transform.h:192
void scalar_product2d(value_type0 alpha, const ContainerTypeL &lambda, const ContainerType0 &v0, const ContainerType1 &v1, const SparseTensor< ContainerType2 > &t, const ContainerTypeM &mu, const ContainerType3 &w0, const ContainerType4 &w1, value_type1 beta, ContainerType5 &y)
Definition multiply.h:493
void scalar_product3d(value_type0 alpha, const ContainerTypeL &lambda, const ContainerType0 &v0, const ContainerType1 &v1, const ContainerType2 &v2, const SparseTensor< ContainerType3 > &t, const ContainerTypeM &mu, const ContainerType4 &w0, const ContainerType5 &w1, const ContainerType6 &w2, value_type1 beta, ContainerType7 &y)
Definition multiply.h:533
void multiply2d(const ContainerTypeL &lambda, const SparseTensor< ContainerType0 > &t, const ContainerType1 &in0, const ContainerType2 &in1, const ContainerTypeM &mu, ContainerType3 &out0, ContainerType4 &out1)
Definition multiply.h:215
ContainerType volume(const SparseTensor< ContainerType > &t)
Definition multiply.h:389
void multiply3d(const ContainerTypeL &lambda, const SparseTensor< ContainerType0 > &t, const ContainerType1 &in0, const ContainerType2 &in1, const ContainerType3 &in2, const ContainerTypeM &mu, ContainerType4 &out0, ContainerType5 &out1, ContainerType6 &out2)
Definition multiply.h:240
Function discretization routines for mpi vectors.
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
Class for 2x2 and 3x3 matrices sharing elements.
Definition tensor.h:51
NotATensorTag tensor_category
Definition tensor_traits.h:40
void value_type
Definition tensor_traits.h:39