27template<
class Container>
48 template<
class Container2>
54 unsigned size()
const {
return O.size();}
73 unsigned size =
M.size();
82 y[i] =
O[i]*
x[i] +
P[i]*
x[i+1];
83 else if ( i ==
size -1 )
84 y[i] =
M[i]*
x[i-1] +
O[i] *
x[i];
86 y[i] =
M[i]*
x[i-1] +
O[i] *
x[i] +
P[i] *
x[i+1];
87 },
M.size(),
M,
O,
P,
x,
y);
92 unsigned size =
M.size();
93 thrust::host_vector<int> A_row_offsets(
size+1), A_column_indices( 3*
size-2);
94 thrust::host_vector<value_type> A_values( 3*
size-2);
96 A_column_indices[0] = 0;
99 A_column_indices[1] = 1;
102 A_row_offsets[1] = 2;
104 for(
unsigned i=1;i<
size; i++)
106 A_column_indices[3*i-1+0] = i-1;
107 A_values[3*i-1+0] =
M[i];
109 A_column_indices[3*i-1+1] = i;
110 A_values[3*i-1+1] =
O[i];
114 A_column_indices[3*i-1+2] = i+1;
115 A_values[3*i-1+2] =
P[i];
117 A_row_offsets[i+1] = A_row_offsets[i] + ( i != (
size-1) ? 3 : 2);
119 return {
size,
size, A_row_offsets, A_column_indices, A_values};
135template<
class value_type>
147 void operator()(
const thrust::host_vector<value_type>&
y, thrust::host_vector<value_type>& x)
const
149 unsigned size = M.size();
150 thrust::host_vector<value_type> ci(size), di(size);
154 for(
unsigned i=1; i<size; i++)
156 ci[i] = P[i]/ ( O[i] -M[i]*ci[i-1]);
157 di[i] = (
y[i]-M[i]*di[i-1])/(O[i] -M[i]*ci[i-1]);
159 x[size-1] = di[size-1];
160 for(
int i=size-2; i>=0; i--)
161 x[i] = di[i] - ci[i]*
x[i+1];
164 thrust::host_vector<value_type> M, O, P;
173template<
class Container>
181 unsigned&
nz() {
return m_nz;}
182 unsigned nz()
const {
return m_nz;}
183 template<
class Container2>
191 template<
class ContainerType0,
class ContainerType1>
194 unsigned size = m_y.size()*m_x.size()*m_nz;
195 unsigned Nx = m_x.size(), Ny = m_y.size();
205 unsigned j = (i/Nx)/Ny;
206 unsigned k = (i/Nx)%Ny, l = i%Nx;
212 b = xO[l]*
x[(j*Ny+k)*Nx+l] + xP[l]*
x[(j*Ny+k)*Nx+l+1];
213 c = xO[l]*
x[(j*Ny+k+1)*Nx+l] + xP[l]*
x[(j*Ny+k+1)*Nx+l+1];
214 y[i] = yO[k]*b + yP[k]*c;
218 a = xO[l]*
x[(j*Ny+k-1)*Nx+l] + xP[l]*
x[(j*Ny+k-1)*Nx+l+1];
219 b = xO[l]*
x[(j*Ny+k)*Nx+l] + xP[l]*
x[(j*Ny+k)*Nx+l+1];
220 y[i] = yM[k]*a + yO[k]*b;
224 a = xO[l]*
x[(j*Ny+k-1)*Nx+l] + xP[l]*
x[(j*Ny+k-1)*Nx+l+1];
225 b = xO[l]*
x[(j*Ny+k)*Nx+l] + xP[l]*
x[(j*Ny+k)*Nx+l+1];
226 c = xO[l]*
x[(j*Ny+k+1)*Nx+l] + xP[l]*
x[(j*Ny+k+1)*Nx+l+1];
227 y[i] = yM[k]*a + yO[k]*b + yP[k]*c;
230 else if ( l == Nx -1 )
234 b = xM[l]*
x[(j*Ny+k)*Nx+l-1] + xO[l]*
x[(j*Ny+k)*Nx+l];
235 c = xM[l]*
x[(j*Ny+k+1)*Nx+l-1] + xO[l]*
x[(j*Ny+k+1)*Nx+l];
236 y[i] = yO[k]*b + yP[k]*c;
238 else if ( k == Ny -1)
240 a = xM[l]*
x[(j*Ny+k-1)*Nx+l-1] + xO[l]*
x[(j*Ny+k-1)*Nx+l];
241 b = xM[l]*
x[(j*Ny+k)*Nx+l-1] + xO[l]*
x[(j*Ny+k)*Nx+l];
242 y[i] = yM[k]*a + yO[k]*b;
246 a = xM[l]*
x[(j*Ny+k-1)*Nx+l-1] + xO[l]*
x[(j*Ny+k-1)*Nx+l];
247 b = xM[l]*
x[(j*Ny+k)*Nx+l-1] + xO[l]*
x[(j*Ny+k)*Nx+l];
248 c = xM[l]*
x[(j*Ny+k+1)*Nx+l-1] + xO[l]*
x[(j*Ny+k+1)*Nx+l];
249 y[i] = yM[k]*a + yO[k]*b + yP[k]*c;
256 b = xM[l]*
x[(j*Ny+k)*Nx+l-1] + xO[l]*
x[(j*Ny+k)*Nx+l] +
257 xP[l]*
x[(j*Ny+k)*Nx+l+1];
258 c = xM[l]*
x[(j*Ny+k+1)*Nx+l-1] + xO[l]*
x[(j*Ny+k+1)*Nx+l] +
259 xP[l]*
x[(j*Ny+k+1)*Nx+l+1];
260 y[i] = yO[k]*b + yP[k]*c;
262 else if ( k == Ny -1)
264 a = xM[l]*
x[(j*Ny+k-1)*Nx+l-1] + xO[l]*
x[(j*Ny+k-1)*Nx+l] +
265 xP[l]*
x[(j*Ny+k-1)*Nx+l+1];
266 b = xM[l]*
x[(j*Ny+k)*Nx+l-1] + xO[l]*
x[(j*Ny+k)*Nx+l] +
267 xP[l]*
x[(j*Ny+k)*Nx+l+1];
268 y[i] = yM[k]*a + yO[k]*b;
272 a = xM[l]*
x[(j*Ny+k-1)*Nx+l-1] + xO[l]*
x[(j*Ny+k-1)*Nx+l] +
273 xP[l]*
x[(j*Ny+k-1)*Nx+l+1];
274 b = xM[l]*
x[(j*Ny+k)*Nx+l-1] + xO[l]*
x[(j*Ny+k)*Nx+l] +
275 xP[l]*
x[(j*Ny+k)*Nx+l+1];
276 c = xM[l]*
x[(j*Ny+k+1)*Nx+l-1] + xO[l]*
x[(j*Ny+k+1)*Nx+l] +
277 xP[l]*
x[(j*Ny+k+1)*Nx+l+1];
278 y[i] = yM[k]*a + yO[k]*b + yP[k]*c;
281 }, size, m_y.M, m_y.O, m_y.P, m_x.M, m_x.O, m_x.P,
x,
y);
294template<
class Container>
302 unsigned size = m_t.x().size()*m_t.y().size()*m_t.nz();
307 template<
class Container2>
311 unsigned size = m_t.x().size()*m_t.y().size()*m_t.nz();
317 template<
class ContainerType0,
class ContainerType1>
320 unsigned Nx = m_t.x().size(), Ny = m_t.y().size();
330 ci[k*Nx + 0] = P[0]/O[0];
331 di[k*Nx + 0] =
y[k*Nx + 0]/O[0];
332 for(
unsigned i=1; i<Nx; i++)
334 ci[k*Nx+i] = P[i]/ ( O[i] -M[i]*ci[k*Nx+i-1]);
335 di[k*Nx+i] = (
y[k*Nx+i]-M[i]*di[k*Nx+i-1])/(O[i] -M[i]*ci[k*Nx+i-1]);
337 x[k*Nx + Nx-1] = di[k*Nx + Nx-1];
338 for(
int i=Nx-2; i>=0; i--)
339 x[k*Nx+i] = di[k*Nx+i] - ci[k*Nx+i]*
x[k*Nx +i+1];
341 }, m_t.y().size()*m_t.nz(), m_t.x().M, m_t.x().O, m_t.x().P, m_ci, m_di,
y, m_tmp);
351 unsigned i = l%Nx, j = l/Nx;
352 ci[(j*Ny+0)*Nx + i] = P[0]/O[0];
353 di[(j*Ny+0)*Nx + i] =
y[(j*Ny+0)*Nx + i]/O[0];
354 for(
unsigned k=1; k<Ny; k++)
356 ci[(j*Ny+k)*Nx+i] = P[k]/ ( O[k] -M[k]*ci[(j*Ny+k-1)*Nx+i]);
357 di[(j*Ny+k)*Nx+i] = (
y[(j*Ny+k)*Nx+i]-M[k]*di[(j*Ny+k-1)*Nx+i])/(O[k] -M[k]*ci[(j*Ny+k-1)*Nx+i]);
359 x[(j*Ny+Ny-1)*Nx + i] = di[(j*Ny+Ny-1)*Nx + i];
360 for(
int k=Ny-2; k>=0; k--)
361 x[(j*Ny+k)*Nx+i] = di[(j*Ny+k)*Nx+i] - ci[(j*Ny+k)*Nx+i]*
x[(j*Ny+k+1)*Nx +i];
363 }, m_t.x().size()*m_t.nz(), m_t.y().M, m_t.y().O, m_t.y().P, m_ci, m_di,m_tmp,
x);
368 Container m_ci, m_di, m_tmp;
409template<
class real_type>
415 std::vector<real_type> xa( g.
n()+2);
416 xa[0] = (xx[g.
n()-1]-2)*g.
h()/2.;
417 for(
unsigned i=0; i<g.
n(); i++)
418 xa[i+1]=xx[i]*g.
h()/2.;
419 xa[g.
n()+1] = (xx[0]+2)*g.
h()/2.;
420 const real_type*
x = &xa[1];
421 real_type xleft = -g.
h()/2., xright = g.
h()/2.;
423 for(
unsigned i=0; i<g.
N(); i++)
424 for(
int k=0; k<(int)g.
n(); k++)
429 A.
O[0] = (4*
x[0]-6*xleft+2*
x[1])/6./
weights[0];
434 if( (i==g.
N()-1) && (k == (
int)g.
n()-1))
437 A.
O[I] = (-4*
x[k]+6*xright-2*
x[k-1])/6./
weights[I];
449template<
class real_type>
456 std::vector<real_type> xa( g.
n()+2);
457 xa[0] = (xx[g.
n()-1]-2)*g.
h()/2.;
458 for(
unsigned i=0; i<g.
n(); i++)
459 xa[i+1]=xx[i]*g.
h()/2.;
460 xa[g.
n()+1] = (xx[0]+2)*g.
h()/2.;
461 const real_type*
x = &xa[1];
462 real_type xleft = -g.
h()/2., xright = g.
h()/2.;
465 for(
unsigned i=0; i<g.
N(); i++)
466 for(
int k=0; k<(int)g.
n(); k++)
471 A.
O[0] = (5*
x[0]-8*xleft+3*
x[1])/8./
weights[0];
476 if( (i==g.
N()-1) && (k == (
int)g.
n()-1))
479 A.
O[I] = (-5*
x[k]+8*xright-3*
x[k-1])/8./
weights[I];
491template<
class real_type>
501template<
class real_type>
510template<
class real_type>
520template<
class real_type>
529template<
class real_type>
535 return {g.
gz().size(), my, mx};
539template<
class real_type>
548template<
class real_type>
554 return {g.
gz().size(), my, mx};
558template<
class real_type>
Creation functions for finite element utilities.
void assign(const from_ContainerType &from, ContainerType &to, Params &&... ps)
Generic way to assign the contents of a from_ContainerType object to a ContainerType object optionall...
Definition blas1.h:767
void parallel_for(Stencil f, unsigned N, ContainerType &&x, ContainerTypes &&... xs)
; Customizable and generic for loop
Definition blas2.h:413
typename TensorTraits< std::decay_t< Vector > >::value_type get_value_type
Definition tensor_traits.h:45
auto weights(const Topology &g)
Nodal weight coefficients.
Definition weights.h:62
dg::InverseKroneckerTriDiagonal2d< dg::HVec_t< real_type > > inv_fem_mass(const aRealTopology2d< real_type > &g)
Inverse finite element mass matrix .
Definition fem.h:502
dg::InverseKroneckerTriDiagonal2d< dg::HVec_t< real_type > > inv_fem_mass2d(const aRealTopology3d< real_type > &g)
Inverse finite element mass matrix .
Definition fem.h:540
thrust::host_vector< real_type > fem_weights(const RealGrid1d< real_type > &g)
finite element weight coefficients
Definition fem_weights.h:54
dg::InverseKroneckerTriDiagonal2d< dg::HVec_t< real_type > > inv_fem_linear2const(const aRealTopology2d< real_type > &g)
Inverse finite element mass matrix .
Definition fem.h:521
dg::InverseKroneckerTriDiagonal2d< dg::HVec_t< real_type > > inv_fem_linear2const2d(const aRealTopology3d< real_type > &g)
Inverse finite element mass matrix .
Definition fem.h:559
dg::KroneckerTriDiagonal2d< dg::HVec_t< real_type > > fem_linear2const2d(const aRealTopology3d< real_type > &g)
finite element projection matrix
Definition fem.h:549
dg::TriDiagonal< dg::HVec_t< real_type > > fem_mass(const RealGrid1d< real_type > &g)
finite element projection matrix
Definition fem.h:410
dg::KroneckerTriDiagonal2d< dg::HVec_t< real_type > > fem_mass2d(const aRealTopology3d< real_type > &g)
finite element projection matrix
Definition fem.h:530
dg::TriDiagonal< dg::HVec_t< real_type > > fem_linear2const(const RealGrid1d< real_type > &g)
finite element projection matrix
Definition fem.h:450
#define DG_DEVICE
Expands to __host__ __device__ if compiled with nvcc else is empty.
Definition dg_doc.h:378
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
static std::vector< real_type > abscissas(unsigned n)
Return Gauss-Legendre nodes on the interval [-1,1].
Definition dlt.h:27
Fast inverse tridiagonal sparse matrix in 2d .
Definition fem.h:296
InverseKroneckerTriDiagonal2d(const KroneckerTriDiagonal2d< Container > &tri)
Definition fem.h:299
InverseKroneckerTriDiagonal2d(const InverseKroneckerTriDiagonal2d< Container2 > &inv_tri)
Definition fem.h:308
dg::get_value_type< Container > value_type
Definition fem.h:297
InverseKroneckerTriDiagonal2d()=default
void operator()(const ContainerType0 &y, ContainerType1 &x)
Definition fem.h:318
const KroneckerTriDiagonal2d< Container > & tri() const
Definition fem.h:316
DEPRECATED/UNTESTED Fast inverse tridiagonal sparse matrix.
Definition fem.h:137
InverseTriDiagonal(const TriDiagonal< thrust::host_vector< value_type > > &tri)
Definition fem.h:139
void operator()(const thrust::host_vector< value_type > &y, thrust::host_vector< value_type > &x) const
Definition fem.h:147
InverseTriDiagonal()=default
Fast tridiagonal sparse matrix in 2d .
Definition fem.h:175
KroneckerTriDiagonal2d(unsigned nz, TriDiagonal< Container > my, TriDiagonal< Container > mx)
Definition fem.h:179
unsigned nz() const
Definition fem.h:182
dg::get_value_type< Container > value_type
Definition fem.h:176
unsigned & nz()
Definition fem.h:181
KroneckerTriDiagonal2d(const KroneckerTriDiagonal2d< Container2 > &other)
Definition fem.h:184
const TriDiagonal< Container > & x() const
Definition fem.h:189
const TriDiagonal< Container > & y() const
Definition fem.h:190
void operator()(const ContainerType0 &x, ContainerType1 &y) const
Definition fem.h:192
KroneckerTriDiagonal2d(TriDiagonal< Container > my, TriDiagonal< Container > mx)
Definition fem.h:178
KroneckerTriDiagonal2d()=default
The simplest implementation of aRealTopology.
Definition grid.h:710
A CSR formatted sparse matrix.
Definition sparsematrix.h:96
Fast (shared memory) tridiagonal sparse matrix.
Definition fem.h:29
Container P
Uper diagonal ["Plus" +1] P[0] maps to T_01
Definition fem.h:124
TriDiagonal(unsigned size)
Allocate size elements for M, O and P.
Definition fem.h:34
dg::get_value_type< Container > value_type
Definition fem.h:30
void resize(unsigned size)
Resize M, O, and P to given size.
Definition fem.h:58
TriDiagonal(const TriDiagonal< Container2 > &other)
Assign M, O, and P from other matrix.
Definition fem.h:49
dg::IHMatrix_t< value_type > asIMatrix() const
convert to a sparse matrix format
Definition fem.h:91
TriDiagonal(Container M, Container O, Container P)
Directly construct from M, O and P.
Definition fem.h:41
unsigned size() const
Definition fem.h:54
Container M
Subdiagonal ["Minus" -1] M[0] is ignored M[1] maps to T_10
Definition fem.h:122
void operator()(const Container &x, Container &y) const
Compute Matrix-vector product .
Definition fem.h:71
Container O
Diagonal ["zerO" 0] O[0] maps to T_00
Definition fem.h:123
An abstract base class for Nd-dimensional dG grids.
Definition grid.h:95
RealGrid< real_type, 1 > gy() const
Equivalent to grid(1)
Definition grid.h:360
real_type h(unsigned u=0) const
Get grid constant for axis u.
Definition grid.h:256
RealGrid< real_type, 1 > gx() const
Equivalent to grid(0)
Definition grid.h:354
unsigned size() const
The total number of points.
Definition grid.h:532
unsigned n(unsigned u=0) const
Get number of polynomial coefficients for axis u.
Definition grid.h:262
RealGrid< real_type, 1 > gz() const
Equivalent to grid(2)
Definition grid.h:366
unsigned N(unsigned u=0) const
Get number of cells for axis u.
Definition grid.h:265