Discontinuous Galerkin Library
#include "dg/algorithm.h"
Loading...
Searching...
No Matches
fem.h
Go to the documentation of this file.
1#pragma once
2
3#include "../blas.h"
4#include "grid.h"
5#include "xspacelib.h"
6#include "fem_weights.h"
7
8namespace dg{
9
27template<class Container>
29{
31 TriDiagonal() = default;
34 TriDiagonal( unsigned size) : M(size), O(size), P(size){}
35
41 TriDiagonal( Container M, Container O, Container P)
42 : M(M), O(O), P(P){}
43
48 template<class Container2>
50 dg::assign( other.M, this->M);
51 dg::assign( other.O, this->O);
52 dg::assign( other.P, this->P);
53 }
54 unsigned size()const {return O.size();}
58 void resize( unsigned size)
59 {
60 M.resize( size);
61 O.resize( size);
62 P.resize( size);
63 }
71 void operator()( const Container& x, Container& y) const
72 {
73 unsigned size = M.size();
75 unsigned i,
76 const value_type* M,
77 const value_type* O,
78 const value_type* P,
79 const value_type* x, value_type* y)
80 {
81 if(i==0)
82 y[i] = O[i]*x[i] + P[i]*x[i+1];
83 else if ( i == size -1 )
84 y[i] = M[i]*x[i-1] + O[i] * x[i];
85 else
86 y[i] = M[i]*x[i-1] + O[i] * x[i] + P[i] *x[i+1];
87 }, M.size(), M, O, P, x, y);
88 }
89
92 unsigned size = M.size();
93 thrust::host_vector<int> A_row_offsets(size+1), A_column_indices( 3*size-2);
94 thrust::host_vector<value_type> A_values( 3*size-2);
95 A_row_offsets[0] = 0;
96 A_column_indices[0] = 0;
97 A_values[0] = O[0];
98
99 A_column_indices[1] = 1;
100 A_values[1] = P[0];
101
102 A_row_offsets[1] = 2;
103
104 for( unsigned i=1;i<size; i++)
105 {
106 A_column_indices[3*i-1+0] = i-1;
107 A_values[3*i-1+0] = M[i];
108
109 A_column_indices[3*i-1+1] = i;
110 A_values[3*i-1+1] = O[i];
111
112 if( i != (size-1))
113 {
114 A_column_indices[3*i-1+2] = i+1;
115 A_values[3*i-1+2] = P[i];
116 }
117 A_row_offsets[i+1] = A_row_offsets[i] + ( i != (size-1) ? 3 : 2);
118 }
119 return {size, size, A_row_offsets, A_column_indices, A_values};
120 }
121
122 Container M;
123 Container O;
124 Container P;
125};
126
129
135template<class value_type>
137{
139 InverseTriDiagonal( const TriDiagonal<thrust::host_vector<value_type>>& tri)
140 {
141 dg::assign( tri.M, this->M);
142 dg::assign( tri.O, this->O);
143 dg::assign( tri.P, this->P);
144 }
145
147 void operator()( const thrust::host_vector<value_type>& y, thrust::host_vector<value_type>& x) const
148 {
149 unsigned size = M.size();
150 thrust::host_vector<value_type> ci(size), di(size);
151 x.resize(size);
152 ci[0] = P[0]/O[0];
153 di[0] = y[0]/O[0];
154 for( unsigned i=1; i<size; i++)
155 {
156 ci[i] = P[i]/ ( O[i] -M[i]*ci[i-1]);
157 di[i] = (y[i]-M[i]*di[i-1])/(O[i] -M[i]*ci[i-1]);
158 }
159 x[size-1] = di[size-1];
160 for( int i=size-2; i>=0; i--)
161 x[i] = di[i] - ci[i]*x[i+1];
162 }
163 private:
164 thrust::host_vector<value_type> M, O, P;
165};
166
173template<class Container>
175{
179 KroneckerTriDiagonal2d( unsigned nz, TriDiagonal<Container> my, TriDiagonal<Container> mx): m_nz(nz), m_y(my), m_x(mx){}
180
181 unsigned& nz() { return m_nz;}
182 unsigned nz() const { return m_nz;}
183 template<class Container2>
185 m_x = other.x();
186 m_y = other.y();
187 m_nz = other.nz();
188 }
189 const TriDiagonal<Container>& x() const {return m_x;}
190 const TriDiagonal<Container>& y() const {return m_y;}
191 template<class ContainerType0, class ContainerType1>
192 void operator()( const ContainerType0& x, ContainerType1& y) const
193 {
194 unsigned size = m_y.size()*m_x.size()*m_nz;
195 unsigned Nx = m_x.size(), Ny = m_y.size();
197 unsigned i,
198 const value_type* yM,
199 const value_type* yO,
200 const value_type* yP,
201 const value_type* xM,
202 const value_type* xO,
203 const value_type* xP,
204 const value_type* x, value_type* y){
205 unsigned j = (i/Nx)/Ny;
206 unsigned k = (i/Nx)%Ny, l = i%Nx;
207 value_type a, b, c;
208 if(l==0)
209 {
210 if( k==0)
211 {
212 b = xO[l]*x[(j*Ny+k)*Nx+l] + xP[l]*x[(j*Ny+k)*Nx+l+1];
213 c = xO[l]*x[(j*Ny+k+1)*Nx+l] + xP[l]*x[(j*Ny+k+1)*Nx+l+1];
214 y[i] = yO[k]*b + yP[k]*c;
215 }
216 else if( k == Ny-1)
217 {
218 a = xO[l]*x[(j*Ny+k-1)*Nx+l] + xP[l]*x[(j*Ny+k-1)*Nx+l+1];
219 b = xO[l]*x[(j*Ny+k)*Nx+l] + xP[l]*x[(j*Ny+k)*Nx+l+1];
220 y[i] = yM[k]*a + yO[k]*b;
221 }
222 else
223 {
224 a = xO[l]*x[(j*Ny+k-1)*Nx+l] + xP[l]*x[(j*Ny+k-1)*Nx+l+1];
225 b = xO[l]*x[(j*Ny+k)*Nx+l] + xP[l]*x[(j*Ny+k)*Nx+l+1];
226 c = xO[l]*x[(j*Ny+k+1)*Nx+l] + xP[l]*x[(j*Ny+k+1)*Nx+l+1];
227 y[i] = yM[k]*a + yO[k]*b + yP[k]*c;
228 }
229 }
230 else if ( l == Nx -1 )
231 {
232 if( k==0)
233 {
234 b = xM[l]*x[(j*Ny+k)*Nx+l-1] + xO[l]*x[(j*Ny+k)*Nx+l];
235 c = xM[l]*x[(j*Ny+k+1)*Nx+l-1] + xO[l]*x[(j*Ny+k+1)*Nx+l];
236 y[i] = yO[k]*b + yP[k]*c;
237 }
238 else if ( k == Ny -1)
239 {
240 a = xM[l]*x[(j*Ny+k-1)*Nx+l-1] + xO[l]*x[(j*Ny+k-1)*Nx+l];
241 b = xM[l]*x[(j*Ny+k)*Nx+l-1] + xO[l]*x[(j*Ny+k)*Nx+l];
242 y[i] = yM[k]*a + yO[k]*b;
243 }
244 else
245 {
246 a = xM[l]*x[(j*Ny+k-1)*Nx+l-1] + xO[l]*x[(j*Ny+k-1)*Nx+l];
247 b = xM[l]*x[(j*Ny+k)*Nx+l-1] + xO[l]*x[(j*Ny+k)*Nx+l];
248 c = xM[l]*x[(j*Ny+k+1)*Nx+l-1] + xO[l]*x[(j*Ny+k+1)*Nx+l];
249 y[i] = yM[k]*a + yO[k]*b + yP[k]*c;
250 }
251 }
252 else
253 {
254 if( k==0)
255 {
256 b = xM[l]*x[(j*Ny+k)*Nx+l-1] + xO[l]*x[(j*Ny+k)*Nx+l] +
257 xP[l]*x[(j*Ny+k)*Nx+l+1];
258 c = xM[l]*x[(j*Ny+k+1)*Nx+l-1] + xO[l]*x[(j*Ny+k+1)*Nx+l] +
259 xP[l]*x[(j*Ny+k+1)*Nx+l+1];
260 y[i] = yO[k]*b + yP[k]*c;
261 }
262 else if ( k == Ny -1)
263 {
264 a = xM[l]*x[(j*Ny+k-1)*Nx+l-1] + xO[l]*x[(j*Ny+k-1)*Nx+l] +
265 xP[l]*x[(j*Ny+k-1)*Nx+l+1];
266 b = xM[l]*x[(j*Ny+k)*Nx+l-1] + xO[l]*x[(j*Ny+k)*Nx+l] +
267 xP[l]*x[(j*Ny+k)*Nx+l+1];
268 y[i] = yM[k]*a + yO[k]*b;
269 }
270 else
271 {
272 a = xM[l]*x[(j*Ny+k-1)*Nx+l-1] + xO[l]*x[(j*Ny+k-1)*Nx+l] +
273 xP[l]*x[(j*Ny+k-1)*Nx+l+1];
274 b = xM[l]*x[(j*Ny+k)*Nx+l-1] + xO[l]*x[(j*Ny+k)*Nx+l] +
275 xP[l]*x[(j*Ny+k)*Nx+l+1];
276 c = xM[l]*x[(j*Ny+k+1)*Nx+l-1] + xO[l]*x[(j*Ny+k+1)*Nx+l] +
277 xP[l]*x[(j*Ny+k+1)*Nx+l+1];
278 y[i] = yM[k]*a + yO[k]*b + yP[k]*c;
279 }
280 }
281 }, size, m_y.M, m_y.O, m_y.P, m_x.M, m_x.O, m_x.P, x, y);
282 }
283 private:
284 unsigned m_nz;
286};
287
294template<class Container>
296{
300 {
301 m_t = tri;
302 unsigned size = m_t.x().size()*m_t.y().size()*m_t.nz();
303 m_ci.resize( size);
304 m_di.resize( size);
305 m_tmp.resize( size);
306 }
307 template<class Container2>
309 {
310 m_t = inv_tri.tri();
311 unsigned size = m_t.x().size()*m_t.y().size()*m_t.nz();
312 m_ci.resize( size);
313 m_di.resize( size);
314 m_tmp.resize( size);
315 }
316 const KroneckerTriDiagonal2d<Container>& tri() const {return m_t;}
317 template<class ContainerType0, class ContainerType1>
318 void operator()( const ContainerType0& y, ContainerType1& x)
319 {
320 unsigned Nx = m_t.x().size(), Ny = m_t.y().size();
321 // solve in two passes, first x then y
323 unsigned k,
324 const value_type* M,
325 const value_type* O,
326 const value_type* P,
327 value_type* ci,
328 value_type* di,
329 const value_type* y, value_type* x){
330 ci[k*Nx + 0] = P[0]/O[0];
331 di[k*Nx + 0] = y[k*Nx + 0]/O[0];
332 for( unsigned i=1; i<Nx; i++)
333 {
334 ci[k*Nx+i] = P[i]/ ( O[i] -M[i]*ci[k*Nx+i-1]);
335 di[k*Nx+i] = (y[k*Nx+i]-M[i]*di[k*Nx+i-1])/(O[i] -M[i]*ci[k*Nx+i-1]);
336 }
337 x[k*Nx + Nx-1] = di[k*Nx + Nx-1];
338 for( int i=Nx-2; i>=0; i--)
339 x[k*Nx+i] = di[k*Nx+i] - ci[k*Nx+i]*x[k*Nx +i+1];
340
341 }, m_t.y().size()*m_t.nz(), m_t.x().M, m_t.x().O, m_t.x().P, m_ci, m_di, y, m_tmp);
342
343 dg::blas2::parallel_for( [ this, Nx, Ny] DG_DEVICE(
344 unsigned l,
345 const value_type* M,
346 const value_type* O,
347 const value_type* P,
348 value_type* ci,
349 value_type* di,
350 const value_type* y, value_type* x){
351 unsigned i = l%Nx, j = l/Nx;
352 ci[(j*Ny+0)*Nx + i] = P[0]/O[0];
353 di[(j*Ny+0)*Nx + i] = y[(j*Ny+0)*Nx + i]/O[0];
354 for( unsigned k=1; k<Ny; k++)
355 {
356 ci[(j*Ny+k)*Nx+i] = P[k]/ ( O[k] -M[k]*ci[(j*Ny+k-1)*Nx+i]);
357 di[(j*Ny+k)*Nx+i] = (y[(j*Ny+k)*Nx+i]-M[k]*di[(j*Ny+k-1)*Nx+i])/(O[k] -M[k]*ci[(j*Ny+k-1)*Nx+i]);
358 }
359 x[(j*Ny+Ny-1)*Nx + i] = di[(j*Ny+Ny-1)*Nx + i];
360 for( int k=Ny-2; k>=0; k--)
361 x[(j*Ny+k)*Nx+i] = di[(j*Ny+k)*Nx+i] - ci[(j*Ny+k)*Nx+i]*x[(j*Ny+k+1)*Nx +i];
362
363 }, m_t.x().size()*m_t.nz(), m_t.y().M, m_t.y().O, m_t.y().P, m_ci, m_di,m_tmp, x);
364 }
365
366 private:
368 Container m_ci, m_di, m_tmp;
369
370};
372
373namespace create{
374
377
409template<class real_type>
411 const RealGrid1d<real_type>& g)
412{
414 std::vector<real_type> xx = dg::DLT<real_type>::abscissas(g.n());
415 std::vector<real_type> xa( g.n()+2);
416 xa[0] = (xx[g.n()-1]-2)*g.h()/2.; // the last one from the previous cell
417 for( unsigned i=0; i<g.n(); i++)
418 xa[i+1]=xx[i]*g.h()/2.;
419 xa[g.n()+1] = (xx[0]+2)*g.h()/2.; // the first one from next cell
420 const real_type* x = &xa[1];
421 real_type xleft = -g.h()/2., xright = g.h()/2.;
422 auto weights = fem_weights(g);
423 for( unsigned i=0; i<g.N(); i++)
424 for( int k=0; k<(int)g.n(); k++)
425 {
426 if( i==0 && k == 0)
427 {
428 A.M[0] = 0.;
429 A.O[0] = (4*x[0]-6*xleft+2*x[1])/6./weights[0];
430 A.P[0] = (x[1]-x[0])/6./weights[0];
431 continue;
432 }
433 int I = (i*g.n()+k);
434 if( (i==g.N()-1) && (k == (int)g.n()-1))
435 {
436 A.M[I] = (x[k]-x[k-1])/6./weights[I];
437 A.O[I] = (-4*x[k]+6*xright-2*x[k-1])/6./weights[I];
438 A.P[I] = 0.;
439 continue;
440 }
441 A.M[I] = (x[k]-x[k-1])/6./weights[I];
442 A.O[I] = 2.*(x[k+1]-x[k-1])/6./weights[I];
443 A.P[I] = (x[k+1]-x[k])/6./weights[I];
444 }
445 return A;
446}
447
449template<class real_type>
451 const RealGrid1d<real_type>& g)
452{
453 //bug! periodic boundary conditions
455 std::vector<real_type> xx = dg::DLT<real_type>::abscissas(g.n());
456 std::vector<real_type> xa( g.n()+2);
457 xa[0] = (xx[g.n()-1]-2)*g.h()/2.; // the last one from the previous cell
458 for( unsigned i=0; i<g.n(); i++)
459 xa[i+1]=xx[i]*g.h()/2.;
460 xa[g.n()+1] = (xx[0]+2)*g.h()/2.; // the first one from next cell
461 const real_type* x = &xa[1];
462 real_type xleft = -g.h()/2., xright = g.h()/2.;
463 auto weights = fem_weights(g);
464
465 for( unsigned i=0; i<g.N(); i++)
466 for( int k=0; k<(int)g.n(); k++)
467 {
468 if( i==0 && k == 0)
469 {
470 A.M[0] = 0.;
471 A.O[0] = (5*x[0]-8*xleft+3*x[1])/8./weights[0];
472 A.P[0] = (x[1]-x[0])/8./weights[0];
473 continue;
474 }
475 int I = (i*g.n()+k);
476 if( (i==g.N()-1) && (k == (int)g.n()-1))
477 {
478 A.M[I] = (x[k]-x[k-1])/8./weights[I];
479 A.O[I] = (-5*x[k]+8*xright-3*x[k-1])/8./weights[I];
480 A.P[I] = 0.;
481 continue;
482 }
483 A.M[I] = (x[k]-x[k-1])/8./weights[I];
484 A.O[I] = 3.*(x[k+1]-x[k-1])/8./weights[I];
485 A.P[I] = (x[k+1]-x[k])/8./weights[I];
486 }
487 return A;
488}
489
491template<class real_type>
494{
495 auto mx = fem_mass(g.gx());
496 auto my = fem_mass(g.gy());
497 return {my, mx};
498}
499
501template<class real_type>
508
510template<class real_type>
513{
514 auto mx = fem_linear2const(g.gx());
515 auto my = fem_linear2const(g.gy());
516 return {my, mx};
517}
518
520template<class real_type>
527
529template<class real_type>
532{
533 auto mx = fem_mass(g.gx());
534 auto my = fem_mass(g.gy());
535 return {g.gz().size(), my, mx};
536}
537
539template<class real_type>
546
548template<class real_type>
551{
552 auto mx = fem_linear2const(g.gx());
553 auto my = fem_linear2const(g.gy());
554 return {g.gz().size(), my, mx};
555}
556
558template<class real_type>
565
567}//namespace create
568}//namespace dg
Creation functions for finite element utilities.
base topology classes
void assign(const from_ContainerType &from, ContainerType &to, Params &&... ps)
Generic way to assign the contents of a from_ContainerType object to a ContainerType object optionall...
Definition blas1.h:767
void parallel_for(Stencil f, unsigned N, ContainerType &&x, ContainerTypes &&... xs)
; Customizable and generic for loop
Definition blas2.h:413
@ y
y direction
@ x
x direction
typename TensorTraits< std::decay_t< Vector > >::value_type get_value_type
Definition tensor_traits.h:45
auto weights(const Topology &g)
Nodal weight coefficients.
Definition weights.h:62
dg::InverseKroneckerTriDiagonal2d< dg::HVec_t< real_type > > inv_fem_mass(const aRealTopology2d< real_type > &g)
Inverse finite element mass matrix .
Definition fem.h:502
dg::InverseKroneckerTriDiagonal2d< dg::HVec_t< real_type > > inv_fem_mass2d(const aRealTopology3d< real_type > &g)
Inverse finite element mass matrix .
Definition fem.h:540
thrust::host_vector< real_type > fem_weights(const RealGrid1d< real_type > &g)
finite element weight coefficients
Definition fem_weights.h:54
dg::InverseKroneckerTriDiagonal2d< dg::HVec_t< real_type > > inv_fem_linear2const(const aRealTopology2d< real_type > &g)
Inverse finite element mass matrix .
Definition fem.h:521
dg::InverseKroneckerTriDiagonal2d< dg::HVec_t< real_type > > inv_fem_linear2const2d(const aRealTopology3d< real_type > &g)
Inverse finite element mass matrix .
Definition fem.h:559
dg::KroneckerTriDiagonal2d< dg::HVec_t< real_type > > fem_linear2const2d(const aRealTopology3d< real_type > &g)
finite element projection matrix
Definition fem.h:549
dg::TriDiagonal< dg::HVec_t< real_type > > fem_mass(const RealGrid1d< real_type > &g)
finite element projection matrix
Definition fem.h:410
dg::KroneckerTriDiagonal2d< dg::HVec_t< real_type > > fem_mass2d(const aRealTopology3d< real_type > &g)
finite element projection matrix
Definition fem.h:530
dg::TriDiagonal< dg::HVec_t< real_type > > fem_linear2const(const RealGrid1d< real_type > &g)
finite element projection matrix
Definition fem.h:450
#define DG_DEVICE
Expands to __host__ __device__ if compiled with nvcc else is empty.
Definition dg_doc.h:378
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
static std::vector< real_type > abscissas(unsigned n)
Return Gauss-Legendre nodes on the interval [-1,1].
Definition dlt.h:27
Fast inverse tridiagonal sparse matrix in 2d .
Definition fem.h:296
InverseKroneckerTriDiagonal2d(const KroneckerTriDiagonal2d< Container > &tri)
Definition fem.h:299
InverseKroneckerTriDiagonal2d(const InverseKroneckerTriDiagonal2d< Container2 > &inv_tri)
Definition fem.h:308
dg::get_value_type< Container > value_type
Definition fem.h:297
void operator()(const ContainerType0 &y, ContainerType1 &x)
Definition fem.h:318
const KroneckerTriDiagonal2d< Container > & tri() const
Definition fem.h:316
DEPRECATED/UNTESTED Fast inverse tridiagonal sparse matrix.
Definition fem.h:137
InverseTriDiagonal(const TriDiagonal< thrust::host_vector< value_type > > &tri)
Definition fem.h:139
void operator()(const thrust::host_vector< value_type > &y, thrust::host_vector< value_type > &x) const
Definition fem.h:147
InverseTriDiagonal()=default
Fast tridiagonal sparse matrix in 2d .
Definition fem.h:175
KroneckerTriDiagonal2d(unsigned nz, TriDiagonal< Container > my, TriDiagonal< Container > mx)
Definition fem.h:179
unsigned nz() const
Definition fem.h:182
dg::get_value_type< Container > value_type
Definition fem.h:176
unsigned & nz()
Definition fem.h:181
KroneckerTriDiagonal2d(const KroneckerTriDiagonal2d< Container2 > &other)
Definition fem.h:184
const TriDiagonal< Container > & x() const
Definition fem.h:189
const TriDiagonal< Container > & y() const
Definition fem.h:190
void operator()(const ContainerType0 &x, ContainerType1 &y) const
Definition fem.h:192
KroneckerTriDiagonal2d(TriDiagonal< Container > my, TriDiagonal< Container > mx)
Definition fem.h:178
The simplest implementation of aRealTopology.
Definition grid.h:710
A CSR formatted sparse matrix.
Definition sparsematrix.h:96
Fast (shared memory) tridiagonal sparse matrix.
Definition fem.h:29
Container P
Uper diagonal ["Plus" +1] P[0] maps to T_01
Definition fem.h:124
TriDiagonal()=default
TriDiagonal(unsigned size)
Allocate size elements for M, O and P.
Definition fem.h:34
dg::get_value_type< Container > value_type
Definition fem.h:30
void resize(unsigned size)
Resize M, O, and P to given size.
Definition fem.h:58
TriDiagonal(const TriDiagonal< Container2 > &other)
Assign M, O, and P from other matrix.
Definition fem.h:49
dg::IHMatrix_t< value_type > asIMatrix() const
convert to a sparse matrix format
Definition fem.h:91
TriDiagonal(Container M, Container O, Container P)
Directly construct from M, O and P.
Definition fem.h:41
unsigned size() const
Definition fem.h:54
Container M
Subdiagonal ["Minus" -1] M[0] is ignored M[1] maps to T_10
Definition fem.h:122
void operator()(const Container &x, Container &y) const
Compute Matrix-vector product .
Definition fem.h:71
Container O
Diagonal ["zerO" 0] O[0] maps to T_00
Definition fem.h:123
An abstract base class for Nd-dimensional dG grids.
Definition grid.h:95
RealGrid< real_type, 1 > gy() const
Equivalent to grid(1)
Definition grid.h:360
real_type h(unsigned u=0) const
Get grid constant for axis u.
Definition grid.h:256
RealGrid< real_type, 1 > gx() const
Equivalent to grid(0)
Definition grid.h:354
unsigned size() const
The total number of points.
Definition grid.h:532
unsigned n(unsigned u=0) const
Get number of polynomial coefficients for axis u.
Definition grid.h:262
RealGrid< real_type, 1 > gz() const
Equivalent to grid(2)
Definition grid.h:366
unsigned N(unsigned u=0) const
Get number of cells for axis u.
Definition grid.h:265
utility functions