13template<
class real_type>
17 std::vector<real_type> w =
x;
18 unsigned n =
x.size();
23 w[0] = 0.5*(
x[1] - (
x[n-1]-2));
24 w[n-1] = 0.5*((
x[0]+2) -
x[n-2]);
25 for(
unsigned i=1; i<n-1; i++)
26 w[i] = 0.5*(x[i+1]-x[i-1]);
53template<
class real_type>
56 thrust::host_vector<real_type> v( g.
size());
57 std::vector<real_type> w = detail::fem_weights<real_type>(g.
n());
58 for(
unsigned i=0; i<g.
N(); i++)
59 for(
unsigned j=0; j<g.
n(); j++)
60 v[i*g.
n() + j] = g.
h()/2.*w[j];
64template<
class real_type>
68 for(
unsigned i=0; i<g.
size(); i++)
74template<
class real_type>
77 thrust::host_vector<real_type> v( g.
size());
78 std::vector<real_type> wx = detail::fem_weights<real_type>(g.
nx());
79 std::vector<real_type> wy = detail::fem_weights<real_type>(g.
ny());
80 for(
unsigned i=0; i<g.
size(); i++)
81 v[i] = g.
hx()*g.
hy()/4.*
83 wy[(i/(g.
nx()*g.
Nx()))%g.
ny()];
87template<
class real_type>
91 for(
unsigned i=0; i<g.
size(); i++)
97template<
class real_type>
100 thrust::host_vector<real_type> v( g.
size());
101 std::vector<real_type> wx = detail::fem_weights<real_type>(g.
nx());
102 std::vector<real_type> wy = detail::fem_weights<real_type>(g.
ny());
103 std::vector<real_type> wz = detail::fem_weights<real_type>(g.
nz());
104 for(
unsigned i=0; i<g.
size(); i++)
105 v[i] = g.
hx()*g.
hy()*g.
hz()/8.*
107 wy[(i/(g.
nx()*g.
Nx()))%g.
ny()]*
113template<
class real_type>
117 for(
unsigned i=0; i<g.
size(); i++)
thrust::host_vector< real_type > fem_inv_weights(const RealGrid1d< real_type > &g)
inverse finite element weight coefficients
Definition fem_weights.h:65
thrust::host_vector< real_type > fem_weights(const RealGrid1d< real_type > &g)
finite element weight coefficients
Definition fem_weights.h:54
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
static std::vector< real_type > abscissas(unsigned n)
Return Gauss-Legendre nodes on the interval [-1,1].
Definition dlt.h:27
The simplest implementation of aRealTopology.
Definition grid.h:710
An abstract base class for Nd-dimensional dG grids.
Definition grid.h:95
real_type h(unsigned u=0) const
Get grid constant for axis u.
Definition grid.h:256
real_type hy() const
Equivalent to h(1)
Definition grid.h:317
real_type hz() const
Equivalent to h(2)
Definition grid.h:320
unsigned nz() const
Equivalent to n(2)
Definition grid.h:330
real_type hx() const
Equivalent to h(0)
Definition grid.h:314
unsigned ny() const
Equivalent to n(1)
Definition grid.h:327
unsigned size() const
The total number of points.
Definition grid.h:532
unsigned n(unsigned u=0) const
Get number of polynomial coefficients for axis u.
Definition grid.h:262
unsigned Nx() const
Equivalent to N(0)
Definition grid.h:334
unsigned nx() const
Equivalent to n(0)
Definition grid.h:324
unsigned Ny() const
Equivalent to N(1)
Definition grid.h:337
unsigned N(unsigned u=0) const
Get number of cells for axis u.
Definition grid.h:265
Creation functions for integration weights and their inverse.