Discontinuous Galerkin Library
#include "dg/algorithm.h"
Loading...
Searching...
No Matches
index.h
Go to the documentation of this file.
1#pragma once
2#include <limits>
3#include <thrust/sort.h>
4#include <thrust/gather.h>
5#include <thrust/scatter.h>
6#include <thrust/sequence.h>
7#include "tensor_traits.h"
10#include "tensor_traits_std.h"
11
12namespace dg
13{
15namespace detail{
16// For the index battle:
17
18// map from vector of keys and values
19template<class Keys, class Values>
20std::map<dg::get_value_type<Keys>,dg::get_value_type<Values>> make_map(
21 const Keys& keys,
22 const Values& vals) // same size
23{
24 std::map<dg::get_value_type<Keys>,dg::get_value_type<Values>> out;
25 for( unsigned u=0; u<keys.size(); u++)
26 out[keys[u]] = vals[u];
27 return out;
28}
29
31template<class IntegerVec>
32IntegerVec combine_gather( const IntegerVec& g1, const IntegerVec& g2)
33{
34 IntegerVec gather = g1;
35 thrust::gather( g1.begin(), g1.end(), g2.begin(), gather.begin());
36 return gather;
37}
38
50template<class IntegerVec>
51IntegerVec invert_permutation( const IntegerVec& p)
52{
53 auto sort_map = p;
54 auto seq = p;
55 thrust::sequence( seq.begin(), seq.end());
56 thrust::scatter( seq.begin(), seq.end(), p.begin(), sort_map.begin());
57 return sort_map;
58}
59
60
61
84template<class T>
85struct Unique
86{
87 thrust::host_vector<int> gather1; // gather unsorted elements from sorted elements (order of equal is preserved), bijective
88 thrust::host_vector<int> gather2; // gather sorted elements from unique ( == reduction keys)
89 thrust::host_vector<T> unique; // unique elements, sorted or same order as original
90 thrust::host_vector<int> howmany; // howmany of each unique element is there?
91};
92
93template<class host_vector >
94Unique<typename host_vector::value_type> find_unique_stable_sort(
95 const host_vector& unsorted_elements)
96{
97 using T = typename host_vector::value_type;
98 Unique<T> uni;
99 // 1. Sort pids with elements so we get associated gather map
100 auto ids = unsorted_elements;
101 uni.gather1.resize( ids.size());
102 thrust::sequence( uni.gather1.begin(), uni.gather1.end()); // 0,1,2,3,...
103 thrust::stable_sort_by_key( ids.begin(), ids.end(),
104 uni.gather1.begin(), std::less()); // this changes both ids and gather1
105 // Find unique elements and how often they appear
106 thrust::host_vector<T> unique_ids( ids.size());
107 thrust::host_vector<int> ones( ids.size(), 1), howmany(ones);
108 auto new_end = thrust::reduce_by_key( ids.begin(), ids.end(),
109 ones.begin(), unique_ids.begin(), howmany.begin(), std::equal_to() );
110 uni.unique = thrust::host_vector<T>( unique_ids.begin(),
111 new_end.first);
112 uni.howmany = thrust::host_vector<int>( howmany.begin(), new_end.second);
113 for( unsigned i=0; i<uni.howmany.size(); i++)
114 uni.gather2.insert( uni.gather2.end(), uni.howmany[i], i);
115
116 //invert the gather1 (because above is wrt to sorted vector)
117 uni.gather1 = invert_permutation( uni.gather1);
118 return uni;
119}
120
121template<class host_vector >
122Unique<typename host_vector::value_type> find_unique_order_preserving(
123 const host_vector& unsorted_elements)
124{
125 using T = typename host_vector::value_type;
126 Unique<T> uni;
127 // find unique elements and how many there are preserving order
128 std::vector<std::vector<int>> sort; // gather sorted from unsorted elements
129 for( unsigned u=0; u<unsorted_elements.size(); u++)
130 {
131 auto it =thrust::find( uni.unique.begin(),
132 uni.unique.end(), unsorted_elements[u]);
133 if( it == uni.unique.end()) // not found
134 {
135 uni.unique.push_back( unsorted_elements[u]);
136 sort.push_back( std::vector<int>(1,u));
137 }
138 else
139 {
140 size_t idx = std::distance( uni.unique.begin(), it);
141 sort[idx].push_back( u);
142 }
143 }
144 // now flatten sort
145 for( unsigned i=0; i<uni.unique.size(); i++)
146 {
147 uni.howmany.push_back( sort[i].size());
148 uni.gather2.insert( uni.gather2.end(), uni.howmany[i], i);
149 for( int k=0; k<uni.howmany[i]; k++)
150 uni.gather1.push_back(sort[i][k]);
151 }
152 //invert the gather_map (because above is wrt to sorted vector)
153 uni.gather1 = invert_permutation( uni.gather1);
154 return uni;
155}
156
158struct MsgChunk
159{
160 int idx;
161 int size;
162};
163inline bool operator==( const dg::detail::MsgChunk& a, const dg::detail::MsgChunk& b)
164{
165 return a.idx == b.idx and a.size == b.size;
166}
167
168inline thrust::host_vector<MsgChunk>
169find_contiguous_chunks(
170 const thrust::host_vector<int>& in) // These are unsorted
171{
172 thrust::host_vector<MsgChunk> range;
173 int previous = std::numeric_limits<int>::max();
174 for( unsigned u=0; u<in.size(); u++)
175 {
176 int idx = in[u];
177 if( idx -1 == previous)
178 range.back().size ++;
179 else
180 range.push_back({idx,1});
181 previous = idx;
182 }
183 return range;
184}
185
186// for every size != 0 in sizes add map[idx] = size;
187inline std::map<int,int> make_size_map( const thrust::host_vector<int>& sizes)
188{
189 std::map<int,int> out;
190 for( unsigned u=0; u<sizes.size(); u++)
191 {
192 if ( sizes[u] != 0)
193 out[u] = sizes[u];
194 }
195 return out;
196}
197
199// We pack every message into a vector of primitive type
200//
201//forward declare
202template<class T>
203auto flatten ( const T& t);
204
205inline thrust::host_vector<int> flatten ( const MsgChunk& t)
206{
207 thrust::host_vector<int> flat(2);
208 flat[0] = t.idx, flat[1] = t.size;
209 return flat;
210}
211
212template<class T>
213thrust::host_vector<T> flatten ( const T& t, dg::AnyScalarTag)
214{
215 return thrust::host_vector<T>(1, t);
216}
217template<class ContainerType>
218auto flatten (
219 const ContainerType& t, dg::AnyVectorTag)
220{
221 decltype( flatten(t[0])) flat;
222 for( unsigned u=0; u<t.size(); u++)
223 {
224 auto value = flatten(t[u]);
225 flat.insert(flat.end(), value.begin(), value.end());
226 }
227 return flat;
228}
229
230template<class T>
231auto flatten ( const T& t) // return type is thrust::host_vector<Type>
232{
233 using tensor_tag = dg::get_tensor_category<T>;
234 return flatten( t, tensor_tag());
235}
236
237// 1. flatten values -> a map of flattened type
238template<class Message>
239auto flatten_values( const std::map<int,Message>& idx_map // map is sorted automatically
240)
241{
242 using vector_type = decltype( flatten( idx_map.at(0) ));
243 std::map<int,vector_type> flat;
244 for( auto& idx : idx_map)
245 {
246 flat[idx.first] = flatten(idx.second);
247 }
248 return flat;
249}
250
251// 2. flatten the map (keys get lost)
252template<class vector>
253vector flatten_map(
254 const std::map<int,vector>& idx_map // map is sorted automatically
255 )
256{
257 vector flat;
258 for( auto& idx : idx_map)
259 flat.insert(flat.end(), idx.second.begin(), idx.second.end());
260 return flat;
261}
262
264// unpack a vector of primitive types into original data type
265
266inline void make_target(
267 const thrust::host_vector<int>& src, MsgChunk& target)
268{
269 assert( src.size() == 2);
270 target = {src[0], src[1]};
271}
272inline void make_target(
273 const thrust::host_vector<int>& src, thrust::host_vector<MsgChunk>& target)
274{
275 assert( src.size() % 2 == 0);
276 target.clear();
277 for( unsigned u=0; u<src.size()/2; u++)
278 target.push_back( { src[2*u], src[2*u+1]});
279}
280template<class T, size_t N>
281void make_target(
282 const thrust::host_vector<T>& src, std::array<T,N>& target)
283{
284 assert( src.size() == N);
285 thrust::copy( src.begin(), src.end(), target.begin());
286}
287template<class T, size_t N>
288void make_target(
289 const thrust::host_vector<T>& src, thrust::host_vector<std::array<T,N>>& target)
290{
291 assert( src.size() % N == 0);
292 target.clear();
293 for( unsigned u=0; u<src.size()/N; u++)
294 {
295 std::array<T,N> t;
296 thrust::copy( src.begin() + N*u, src.begin() + N*(u+1), t.begin());
297 target.push_back( t);
298 }
299}
300template<class Target, class Source>
301void make_target( const thrust::host_vector<Source>& src, Target& t, AnyScalarTag)
302{
303 assert( src.size() == 1);
304 t = src[0];
305}
306template<class Target, class Source>
307void make_target( const thrust::host_vector<Source>& src, Target& t, AnyVectorTag)
308{
309 t = src;
310}
311template<class Target, class Source>
312void make_target( const thrust::host_vector<Source>& src, Target& t)
313{
314 using tensor_tag = dg::get_tensor_category<Target>;
315 make_target(src, t, tensor_tag() );
316}
317
318template<class Target, class T>
319std::map<int, Target> make_map_t(
320 const thrust::host_vector<T>& flat_map,
321 const std::map<int,int>& size_map // key and chunk size of idx_map
322 )
323{
324 // 1. unflatten vector
325 std::map<int, Target> map;
326 unsigned start = 0;
327 for( auto& size : size_map)
328 {
329 if( size.second != 0)
330 {
331 thrust::host_vector<T> partial(
332 flat_map.begin()+start, flat_map.begin() + start + size.second);
333 start += size.second;
334 make_target( partial, map[size.first]);
335 }
336 }
337 // 2. Convert each message into target type
338 return map;
339}
340
341
342
343
345template<class T>
346std::map<int,int> get_size_map( const std::map<int, thrust::host_vector<T>>& idx_map)
347{
348 std::map<int,int> out;
349 for( auto& idx : idx_map)
350 out[idx.first] = idx.second.size();
351 return out;
352}
353
354
355
356
357}// namespace detail
358// TODO Maybe this can be public? Why would anyone call these functions directly?
359// TODO Maybe be a MPIGather function?
369template<class ArrayVec = thrust::host_vector<std::array<int,2>>, class IntVec = thrust::host_vector<int>>
370std::map<int, IntVec> gIdx2unique_idx(
371 const ArrayVec& gIdx, // unsorted (cannot be map)
372 IntVec& bufferIdx) // gIdx size, gather gIdx from flatten_map
373{
374 auto uni = detail::find_unique_order_preserving( gIdx);
375 // get pids
376 IntVec pids(uni.unique.size()), lIdx(pids);
377 for( int i=0; i<(int)pids.size(); i++)
378 {
379 pids[i] = uni.unique[i][0];
380 lIdx[i] = uni.unique[i][1]; // the local index
381 }
382 auto uni_pids = detail::find_unique_stable_sort( pids);
383 bufferIdx = detail::combine_gather( uni.gather1,
384 detail::combine_gather( uni.gather2, uni_pids.gather1));
385 // duplicate the sort on lIdx
386 auto sorted_unique_gIdx = lIdx;
387 thrust::scatter( lIdx.begin(), lIdx.end(),
388 uni_pids.gather1.begin(), sorted_unique_gIdx.begin());
389 // return map
390 std::map<int,int> pids_howmany = detail::make_map( uni_pids.unique, uni_pids.howmany);
391 return detail::make_map_t<IntVec>( sorted_unique_gIdx, pids_howmany);
392}
393
394template<class ConversionPolicy, class IntVec = thrust::host_vector<int>>
395thrust::host_vector<std::array<int,2>> gIdx2gIdx( const IntVec& gIdx, const ConversionPolicy& p)
396{
397 thrust::host_vector<std::array<int,2>> arrayIdx( gIdx.size());
398 for(unsigned i=0; i<gIdx.size(); i++)
399 assert(p.global2localIdx(gIdx[i],
400 arrayIdx[i][1], arrayIdx[i][0]) );
401 return arrayIdx;
402}
403
425template<class ConversionPolicy, class IntVec = thrust::host_vector<int>>
426std::map<int, IntVec> gIdx2unique_idx(
427 const IntVec& globalIndexMap,
428 IntVec& bufferIdx, // may alias globalIndexMap
429 const ConversionPolicy& p)
430{
431 // TODO update docu on local_size() ( if we don't scatter we don't need it)
432 return gIdx2unique_idx( gIdx2gIdx(globalIndexMap), bufferIdx);
433}
435} // namespace dg
typename TensorTraits< std::decay_t< Vector > >::tensor_category get_tensor_category
Definition tensor_traits.h:47
typename TensorTraits< std::decay_t< Vector > >::value_type get_value_type
Definition tensor_traits.h:45
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
Scalar Tag base class.
Definition scalar_categories.h:11
Vector Tag base class, indicates the basic Vector/container concept.
Definition vector_categories.h:28