Discontinuous Galerkin Library
#include "dg/algorithm.h"
Loading...
Searching...
No Matches
lgmres.h
Go to the documentation of this file.
1#ifndef _DG_LGMRES_
2#define _DG_LGMRES_
3
4#include <iostream>
5#include <cstring>
6#include <cmath>
7#include <algorithm>
8
9#include "blas.h"
10#include "functors.h"
11
18namespace dg{
19
52template< class ContainerType>
53class LGMRES
54{
55 public:
56 using container_type = ContainerType;
59 LGMRES() = default;
69 LGMRES( const ContainerType& copyable, unsigned max_inner, unsigned max_outer, unsigned max_restarts):
70 m_tmp(copyable),
71 m_dx(copyable),
72 m_residual( copyable),
73 m_maxRestarts( max_restarts),
74 m_inner_m( max_inner),
75 m_outer_k( max_outer),
76 m_krylovDimension( max_inner+max_outer)
77 {
78 if( m_inner_m < m_outer_k)
79 std::cerr << "WARNING (LGMRES): max_inner is smaller than the restart dimension max_outer. Did you swap the constructor parameters?\n";
80 //Declare Hessenberg matrix
81 m_H.assign( m_krylovDimension+1, std::vector<value_type>( m_krylovDimension, 0));
82 m_HH = m_H; //copy of H to be stored unaltered
83 //Declare givens rotation matrix
84 m_givens.assign( m_krylovDimension+1, {0,0});
85 //Declare s that minimizes the residual:
86 m_s.assign(m_krylovDimension+1,0);
87 // m+k+1 orthogonal basis vectors:
88 // k augmented pairs
89 m_outer_w.assign(m_outer_k,copyable);
90 m_outer_Az.assign(m_outer_k,copyable);
91 m_V.assign(m_krylovDimension+1,copyable);
92 }
99 template<class ...Params>
100 void construct( Params&& ...ps)
101 {
102 //construct and swap
103 *this = LGMRES( std::forward<Params>( ps)...);
104 }
107 void set_max( unsigned new_Restarts) {m_maxRestarts = new_Restarts;}
110 unsigned get_max() const {return m_maxRestarts;}
112 void set_throw_on_fail( bool throw_on_fail){
113 m_throw_on_fail = throw_on_fail;
114 }
117 const ContainerType& copyable()const{ return m_tmp;}
118
141 template< class MatrixType0, class ContainerType0, class ContainerType1, class MatrixType1, class ContainerType2 >
142 unsigned solve( MatrixType0&& A, ContainerType0& x, const ContainerType1& b, MatrixType1&& P, const ContainerType2& W, value_type eps = 1e-12, value_type nrmb_correction = 1);
143
149 bool converged() const{
150 return m_converged;
151 }
152
153 private:
154 template <class Preconditioner, class ContainerType0>
155 void Update(Preconditioner&& P, ContainerType &dx, ContainerType0 &x,
156 unsigned dimension, const std::vector<std::vector<value_type>> &H,
157 std::vector<value_type> &s, const std::vector<const ContainerType*> &W);
158 std::vector<std::array<value_type,2>> m_givens;
159 std::vector<std::vector<value_type>> m_H, m_HH;
160 ContainerType m_tmp, m_dx, m_residual;
161 std::vector<ContainerType> m_V, m_outer_w, m_outer_Az;
162 std::vector<value_type> m_s;
163 unsigned m_maxRestarts, m_inner_m, m_outer_k, m_krylovDimension;
164 bool m_converged = true, m_throw_on_fail = true;
165};
167
168template< class ContainerType>
169template < class Preconditioner, class ContainerType0>
170void LGMRES<ContainerType>::Update(Preconditioner&& P, ContainerType &dx,
171 ContainerType0 &x,
172 unsigned dimension, const std::vector<std::vector<value_type>> &H,
173 std::vector<value_type> &s, const std::vector<const ContainerType*> &W)
174{
175 // Solve for the coefficients, i.e. solve for c in
176 // H*c=s, but we do it in place.
177 for (int lupe = dimension; lupe >= 0; --lupe)
178 {
179 s[lupe] = s[lupe]/H[lupe][lupe];
180 for (int innerLupe = lupe - 1; innerLupe >= 0; --innerLupe)
181 {
182 // Subtract off the parts from the upper diagonal of the matrix.
183 s[innerLupe] = DG_FMA( -s[lupe],H[innerLupe][lupe], s[innerLupe]);
184 }
185 }
186
187 // Finally update the approximation. W_m*s
188 dg::blas2::gemv( dg::asDenseMatrix( W, dimension+1), std::vector<value_type>( s.begin(), s.begin()+dimension+1), dx);
189 // right preconditioner
190 dg::blas2::gemv( std::forward<Preconditioner>(P), dx, m_tmp);
191 dg::blas1::axpby(1.,m_tmp,1.,x);
192}
193
194template< class ContainerType>
195template< class Matrix, class ContainerType0, class ContainerType1, class Preconditioner, class ContainerType2>
196unsigned LGMRES< ContainerType>::solve( Matrix&& A, ContainerType0& x, const ContainerType1& b, Preconditioner&& P, const ContainerType2& S, value_type eps, value_type nrmb_correction)
197{
198 // Improvements over old implementation:
199 // - Use right preconditioned system such that residual norm is available in minimization
200 // - do not compute Az explicitly but save on iterations
201 // - first cycle equivalent to GMRES(m+k)
202 // - use weights for orthogonalization (works because in Saad book 6.29 and 6.30 are also true if V_m is unitary in the S scalar product, the Hessenberg matrix is still formed in the regular 2-norm, just define J(y) with S-norm in 6.26 and form V_m with a Gram-Schmidt process in the W-norm)
203 value_type nrmb = sqrt( blas2::dot( S, b));
204 value_type tol = eps*(nrmb + nrmb_correction);
205 m_converged = true;
206 if( nrmb == 0)
207 {
208 blas1::copy( 0., x);
209 return 0;
210 }
211
212 unsigned restartCycle = 0;
213 unsigned counter = 0;
214 value_type rho = 1.;
215 // DO NOT HOLD THESE AS PRIVATE!! MAKES BUG IN COPY!!
216 std::vector<ContainerType const*> m_W, m_Vptr;
217 m_W.assign(m_krylovDimension,nullptr);
218 m_Vptr.assign(m_krylovDimension+1,nullptr);
219 for( unsigned i=0; i<m_krylovDimension+1; i++)
220 m_Vptr[i] = &m_V[i];
221 do
222 {
223 dg::blas2::gemv(std::forward<Matrix>(A),x,m_residual);
224 dg::blas1::axpby(1.,b,-1.,m_residual);
225 rho = sqrt(dg::blas2::dot(S,m_residual));
226 counter ++;
227 if( rho < tol) //if x happens to be the solution
228 return counter;
229 // The first vector in the Krylov subspace is the normalized residual.
230 dg::blas1::axpby(1.0/rho,m_residual,0.,m_V[0]);
231
232 m_s[0] = rho;
233 for(unsigned lupe=1;lupe<=m_krylovDimension;++lupe)
234 m_s[lupe] = 0.0;
235
236 // Go through and generate the pre-determined number of vectors for the Krylov subspace.
237 for( unsigned iteration=0;iteration<m_krylovDimension;++iteration)
238 {
239 unsigned outer_w_count = std::min(restartCycle,m_outer_k);
240 if(iteration < m_krylovDimension-outer_w_count){
241 m_W[iteration] = &m_V[iteration];
242 dg::blas2::gemv(std::forward<Preconditioner>(P),*m_W[iteration],m_tmp);
243 dg::blas2::gemv(std::forward<Matrix>(A),m_tmp,m_V[iteration+1]);
244 counter++;
245 } else if( iteration < m_krylovDimension){ // size of W
246 unsigned w_idx = iteration - (m_krylovDimension - outer_w_count);
247 m_W[iteration] = &m_outer_w[w_idx];
248 dg::blas1::copy( m_outer_Az[w_idx], m_V[iteration+1]);
249 }
250
251 // Get the next entry in the vectors that form the basis for the Krylov subspace.
252 // Arnoldi modified Gram-Schmidt orthogonalization
253 for(unsigned row=0;row<=iteration;++row)
254 {
255 m_HH[row][iteration] = m_H[row][iteration]
256 = dg::blas2::dot(m_V[iteration+1],S,m_V[row]);
257 dg::blas1::axpby(-m_H[row][iteration],m_V[row],1.,m_V[iteration+1]);
258
259 }
260 m_HH[iteration+1][iteration] = m_H[iteration+1][iteration]
261 = sqrt(dg::blas2::dot(m_V[iteration+1],S,m_V[iteration+1]));
262 dg::blas1::scal(m_V[iteration+1],1.0/m_H[iteration+1][iteration]);
263
264 // Now solve the least squares problem
265 // using Givens Rotations transforming H into
266 // an upper triangular matrix (see Saad Chapter 6.5.3)
267 // corresponding to QR-decomposition of H
268
269 // First apply previous rotations to the current matrix.
270 value_type tmp = 0;
271 for (unsigned row = 0; row < iteration; row++)
272 {
273 tmp = m_givens[row][0]*m_H[row][iteration] + // c_row
274 m_givens[row][1]*m_H[row+1][iteration]; // s_row
275 m_H[row+1][iteration] = -m_givens[row][1]*m_H[row][iteration]
276 + m_givens[row][0]*m_H[row+1][iteration];
277 m_H[row][iteration] = tmp;
278 }
279
280 // Figure out the next Givens rotation.
281 if(m_H[iteration+1][iteration] == 0.0)
282 {
283 // It is already upper triangular. Just leave it be....
284 m_givens[iteration][0] = 1.0; // c_i
285 m_givens[iteration][1] = 0.0; // s_i
286 }
287 else if (fabs(m_H[iteration+1][iteration]) > fabs(m_H[iteration][iteration]))
288 {
289 // The off diagonal entry has a larger
290 // magnitude. Use the ratio of the
291 // diagonal entry over the off diagonal.
292 tmp = m_H[iteration][iteration]/m_H[iteration+1][iteration];
293 m_givens[iteration][1] = 1.0/sqrt(1.0+tmp*tmp);
294 m_givens[iteration][0] = tmp*m_givens[iteration][1];
295 }
296 else
297 {
298 // The off diagonal entry has a smaller
299 // magnitude. Use the ratio of the off
300 // diagonal entry to the diagonal entry.
301 tmp = m_H[iteration+1][iteration]/m_H[iteration][iteration];
302 m_givens[iteration][0] = 1.0/sqrt(1.0+tmp*tmp);
303 m_givens[iteration][1] = tmp*m_givens[iteration][0];
304 }
305 // Apply the new Givens rotation on the new entry in the upper Hessenberg matrix.
306 tmp = m_givens[iteration][0]*m_H[iteration][iteration] +
307 m_givens[iteration][1]*m_H[iteration+1][iteration];
308 m_H[iteration+1][iteration] = -m_givens[iteration][1]*m_H[iteration][iteration] +
309 m_givens[iteration][0]*m_H[iteration+1][iteration]; // zero
310 m_H[iteration][iteration] = tmp;
311 // Finally apply the new Givens rotation on the s vector
312 tmp = m_givens[iteration][0]*m_s[iteration] + m_givens[iteration][1]*m_s[iteration+1];
313 m_s[iteration+1] = -m_givens[iteration][1]*m_s[iteration] + m_givens[iteration][1]*m_s[iteration+1];
314 m_s[iteration] = tmp;
315
316 rho = fabs(m_s[iteration+1]);
317 if( rho < tol)
318 {
319 Update(std::forward<Preconditioner>(P),m_dx,x,iteration,m_H,m_s,m_W);
320 return counter;
321 }
322 }
323 Update(std::forward<Preconditioner>(P),m_dx,x,m_krylovDimension-1,m_H,m_s,m_W);
324 if( m_outer_k > 1)
325 {
326 std::rotate(m_outer_w.rbegin(),m_outer_w.rbegin()+1,m_outer_w.rend());
327 std::rotate(m_outer_Az.rbegin(),m_outer_Az.rbegin()+1,m_outer_Az.rend());
328 }
329 if( m_outer_k > 0)
330 {
331 dg::blas1::copy(m_dx,m_outer_w[0]);
332 // compute A P dx
333 std::vector<value_type> coeffs( m_krylovDimension+1, 0.);
334 for( unsigned i=0; i<m_krylovDimension+1; i++)
335 {
336 coeffs[i] = 0.;
337 for( unsigned k=0; k<m_krylovDimension; k++)
338 coeffs[i] = DG_FMA( m_HH[i][k],m_s[k], coeffs[i]);
339 }
340 dg::blas2::gemv( dg::asDenseMatrix( m_Vptr), coeffs, m_outer_Az[0]);
341 }
342
343 restartCycle ++;
344 // Go through the requisite number of restarts.
345 } while( (restartCycle < m_maxRestarts) && (rho > tol));
346 if( rho > tol)
347 {
348 if( m_throw_on_fail)
349 {
350 throw dg::Fail( eps, Message(_ping_)
351 <<"After "<<counter<<" LGMRES iterations");
352 }
353 m_converged = false;
354 }
355 return counter;
356}
358}//namespace dg
359#endif
Functor class for the right preconditioned LGMRES method to solve .
Definition lgmres.h:54
bool converged() const
If last call to solve converged or not.
Definition lgmres.h:149
void set_throw_on_fail(bool throw_on_fail)
Set or unset a throw on failure-to-converge.
Definition lgmres.h:112
LGMRES(const ContainerType &copyable, unsigned max_inner, unsigned max_outer, unsigned max_restarts)
Allocate memory for the preconditioned LGMRES method.
Definition lgmres.h:69
const ContainerType & copyable() const
Return an object of same size as the object used for construction.
Definition lgmres.h:117
LGMRES()=default
Allocate nothing, Call construct method before usage.
void construct(Params &&...ps)
Perfect forward parameters to one of the constructors.
Definition lgmres.h:100
unsigned get_max() const
Get the current maximum number of restarts.
Definition lgmres.h:110
void set_max(unsigned new_Restarts)
Set the number of restarts.
Definition lgmres.h:107
ContainerType container_type
Definition lgmres.h:56
unsigned solve(MatrixType0 &&A, ContainerType0 &x, const ContainerType1 &b, MatrixType1 &&P, const ContainerType2 &W, value_type eps=1e-12, value_type nrmb_correction=1)
Solve using a right preconditioned LGMRES method.
dg::get_value_type< ContainerType > value_type
Definition lgmres.h:57
#define _ping_
Definition exceptions.h:12
void copy(const ContainerTypeIn &source, ContainerTypeOut &target)
Definition blas1.h:243
void axpby(value_type alpha, const ContainerType1 &x, value_type1 beta, ContainerType &y)
Definition blas1.h:306
void scal(ContainerType &x, value_type alpha)
Definition blas1.h:263
void gemv(get_value_type< ContainerType1 > alpha, MatrixType &&M, const ContainerType1 &x, get_value_type< ContainerType1 > beta, ContainerType2 &y)
Alias for blas2::symv ;.
Definition blas2.h:339
auto dot(const ContainerType1 &x, const MatrixType &m, const ContainerType2 &y)
; Binary reproducible general dot product
Definition blas2.h:94
auto asDenseMatrix(const std::vector< const ContainerType * > &in)
Lightweight DenseMatrix for dg::blas2::gemv.
Definition densematrix.h:75
typename TensorTraits< std::decay_t< Vector > >::value_type get_value_type
Definition tensor_traits.h:45
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
Indicate failure to converge.
Definition exceptions.h:126