Discontinuous Galerkin Library
#include "dg/algorithm.h"
Loading...
Searching...
No Matches
prolongation.h
Go to the documentation of this file.
1#pragma once
2
3#include "grid.h"
4#include "weights.h"
5#include "dg/blas1.h"
6#include "interpolation.h"
7#include "projection.h"
13namespace dg{
14namespace create{
16namespace detail{
17template< class Topology, size_t M, size_t ...I>
18auto do_full_abscissas( const Topology& g, std::array<unsigned, M> map,
19 std::index_sequence<I...>)
20{
21 std::array< decltype(g.abscissas(0)),Topology::ndim()> abs;
22 for( unsigned u=0; u<Topology::ndim(); u++)
23 abs[u] = g.abscissas(u);
24 auto abs_red = abs;
25 for( unsigned u=0; u<Topology::ndim(); u++)
26 dg::blas1::copy( 1, abs_red[u]);
27 std::array<decltype(g.abscissas(0)),M> full_abs;
28 for( unsigned u=0; u<M; u++)
29 {
30 dg::blas1::copy( abs[map[u]], abs_red[map[u]]);
31 full_abs[u] = dg::kronecker( dg::Product(), abs_red[I]...);
32 dg::blas1::copy( 1, abs_red[map[u]]);
33 }
34 return full_abs;
35}
36
37template<class Topology, size_t Md>
38std::array<bool,Topology::ndim()> axes2bools( const Topology& g, std::array<unsigned,Md> axes)
39{
40 // The axes that are averaged
41 std::array<bool,Topology::ndim()> bools;
42 for( unsigned u=0; u<Topology::ndim(); u++)
43 bools[u] = false;
44 for( unsigned u=0; u<Md; u++)
45 {
46 assert( axes[u] < bools.size());
47 bools[axes[u]] = true;
48 }
49 return bools;
50}
51template<class Topology, size_t Md>
52std::array<unsigned,Topology::ndim()-Md> complement( const Topology& g, std::array<unsigned,Md> axes)
53{
54 // The axes that remain
55 std::array<unsigned,Topology::ndim()-Md> comp = {0u};
56 auto bools = axes2bools( g, axes);
57 unsigned counter = 0;
58 for ( unsigned u=0; u<Topology::ndim(); u++)
59 {
60 if( !bools[u])
61 {
62 comp[counter] = u;
63 counter++;
64 }
65 }
66 return comp;
67}
68
69} // namespace detail
73
93template<class real_type, size_t Nd, size_t Md>
95 const aRealTopology<real_type,Nd>& g_new,
96 std::array<unsigned,Md> axes)
97{
98 static_assert( Md < Nd && Md > 0 && Nd > 0);
99 std::array<unsigned,Nd-Md> remains = detail::complement( g_new, axes);
100 auto full_abs = detail::do_full_abscissas( g_new, remains, std::make_index_sequence<Nd>());
101 std::vector<dg::SparseMatrix<int,real_type,thrust::host_vector>> matrix(Nd-Md);
102 for( unsigned u=0; u<Nd-Md; u++)
103 {
104 matrix[u] = detail::interpolation1d( dg::xspace, full_abs[u],
105 g_new.grid(remains[u]), g_new.bc(remains[u]));
106 }
107 for( unsigned u=1; u<Nd-Md; u++)
108 matrix[0] = dg::tensorproduct_cols( matrix[u], matrix[0]);
109 return matrix[0];
110}
111
130template<class real_type, size_t Nd, size_t Md>
132 std::array<unsigned,Md> axes,
133 const aRealTopology<real_type,Nd>& g_old)
134{
135 return prolongation( g_old, axes).transpose();
136}
137
156template<class real_type, size_t Nd, size_t Md>
158 std::array<unsigned,Md> axes,
159 const aRealTopology<real_type,Nd>& g_old)
160{
161 std::array<unsigned,Nd-Md> remains = detail::complement( g_old, axes);
162 std::array<RealGrid<real_type,1>,Nd-Md> gs;
163 for( unsigned u=0; u<Nd-Md; u++)
164 gs[u] = g_old.grid( remains[u]);
165 RealGrid<real_type, Nd-Md> g_new(gs);
166 auto w_old = dg::create::weights( g_old);
167 auto v_new = dg::create::inv_weights( g_new);
168 auto project = prolongation( g_old, axes).transpose();
169 for( unsigned row=0; row<project.num_rows(); row++)
170 for ( int jj = project.row_offsets()[row]; jj < project.row_offsets()[row+1]; jj++)
171 {
172 int col = project.column_indices()[jj];
173 // Note that w_old is multiplied before v_new (keeps results backwards reproducible)
174 project.values()[jj] = v_new[row] * ( project.values()[jj]* w_old[col]);
175 }
176 return project;
177}
179
180} // namespace create
181
182}//namespace dg
base topology classes
auto kronecker(Functor &&f, const ContainerType &x0, const ContainerTypes &... xs)
Memory allocating version of dg::blas1::kronecker
Definition blas1.h:857
void copy(const ContainerTypeIn &source, ContainerTypeOut &target)
Definition blas1.h:243
@ xspace
Configuration space "nodal values".
Definition enums.h:166
auto inv_weights(const Topology &g)
Inverse nodal weight coefficients.
Definition weights.h:107
auto weights(const Topology &g)
Nodal weight coefficients.
Definition weights.h:62
dg::MIHMatrix_t< typename MPITopology::value_type > projection(const MPITopology &g_new, const MPITopology &g_old, std::string method="dg")
Create a projection between two grids.
Definition mpi_projection.h:272
dg::SparseMatrix< int, T, thrust::host_vector > tensorproduct_cols(const dg::SparseMatrix< int, T, thrust::host_vector > &lhs, const dg::SparseMatrix< int, T, thrust::host_vector > &rhs)
Form the tensor (Kronecker) product between two matrices in the column index
Definition xspacelib.h:89
Interpolation matrix creation functions.
dg::MIHMatrix_t< typename MPITopology::value_type > reduction(std::array< unsigned, Md > axes, const MPITopology &g_old)
Reduction matrix along given axes.
Definition mpi_prolongation.h:31
dg::MIHMatrix_t< typename MPITopology::value_type > prolongation(const MPITopology &g_new, std::array< unsigned, Md > axes)
Prolongation matrix along given axes / Transpose of reduction.
Definition mpi_prolongation.h:18
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
Creation of projection matrices.
Definition subroutines.h:100
The simplest implementation of aRealTopology.
Definition grid.h:710
A CSR formatted sparse matrix.
Definition sparsematrix.h:96
SparseMatrix transpose() const
Transposition.
Definition sparsematrix.h:353
An abstract base class for Nd-dimensional dG grids.
Definition grid.h:95
RealGrid< real_type, 1 > grid(unsigned u) const
Get axis u as a 1d grid.
Definition grid.h:274
dg::bc bc(unsigned u=0) const
Get boundary condition for axis u.
Definition grid.h:268
Creation functions for integration weights and their inverse.