17template<
class Topology,
size_t M,
size_t ...I>
18auto do_full_abscissas(
const Topology& g, std::array<unsigned, M> map,
19 std::index_sequence<I...>)
21 std::array<
decltype(g.abscissas(0)),Topology::ndim()> abs;
22 for(
unsigned u=0; u<Topology::ndim(); u++)
23 abs[u] = g.abscissas(u);
25 for(
unsigned u=0; u<Topology::ndim(); u++)
27 std::array<
decltype(g.abscissas(0)),M> full_abs;
28 for(
unsigned u=0; u<M; u++)
37template<
class Topology,
size_t Md>
38std::array<bool,Topology::ndim()> axes2bools(
const Topology& g, std::array<unsigned,Md> axes)
41 std::array<bool,Topology::ndim()> bools;
42 for(
unsigned u=0; u<Topology::ndim(); u++)
44 for(
unsigned u=0; u<Md; u++)
46 assert( axes[u] < bools.size());
47 bools[axes[u]] =
true;
51template<
class Topology,
size_t Md>
52std::array<unsigned,Topology::ndim()-Md> complement(
const Topology& g, std::array<unsigned,Md> axes)
55 std::array<unsigned,Topology::ndim()-Md> comp = {0u};
56 auto bools = axes2bools( g, axes);
58 for (
unsigned u=0; u<Topology::ndim(); u++)
93template<
class real_type,
size_t Nd,
size_t Md>
96 std::array<unsigned,Md> axes)
98 static_assert( Md < Nd && Md > 0 && Nd > 0);
99 std::array<unsigned,Nd-Md> remains = detail::complement( g_new, axes);
100 auto full_abs = detail::do_full_abscissas( g_new, remains, std::make_index_sequence<Nd>());
101 std::vector<dg::SparseMatrix<int,real_type,thrust::host_vector>> matrix(Nd-Md);
102 for(
unsigned u=0; u<Nd-Md; u++)
104 matrix[u] = detail::interpolation1d(
dg::xspace, full_abs[u],
105 g_new.
grid(remains[u]), g_new.
bc(remains[u]));
107 for(
unsigned u=1; u<Nd-Md; u++)
130template<
class real_type,
size_t Nd,
size_t Md>
132 std::array<unsigned,Md> axes,
156template<
class real_type,
size_t Nd,
size_t Md>
158 std::array<unsigned,Md> axes,
161 std::array<unsigned,Nd-Md> remains = detail::complement( g_old, axes);
162 std::array<RealGrid<real_type,1>,Nd-Md> gs;
163 for(
unsigned u=0; u<Nd-Md; u++)
164 gs[u] = g_old.
grid( remains[u]);
165 RealGrid<real_type, Nd-Md> g_new(gs);
169 for(
unsigned row=0; row<project.num_rows(); row++)
170 for (
int jj = project.row_offsets()[row]; jj < project.row_offsets()[row+1]; jj++)
172 int col = project.column_indices()[jj];
174 project.values()[jj] = v_new[row] * ( project.values()[jj]* w_old[col]);
auto kronecker(Functor &&f, const ContainerType &x0, const ContainerTypes &... xs)
Memory allocating version of dg::blas1::kronecker
Definition blas1.h:857
void copy(const ContainerTypeIn &source, ContainerTypeOut &target)
Definition blas1.h:243
@ xspace
Configuration space "nodal values".
Definition enums.h:166
auto inv_weights(const Topology &g)
Inverse nodal weight coefficients.
Definition weights.h:107
auto weights(const Topology &g)
Nodal weight coefficients.
Definition weights.h:62
dg::MIHMatrix_t< typename MPITopology::value_type > projection(const MPITopology &g_new, const MPITopology &g_old, std::string method="dg")
Create a projection between two grids.
Definition mpi_projection.h:272
dg::SparseMatrix< int, T, thrust::host_vector > tensorproduct_cols(const dg::SparseMatrix< int, T, thrust::host_vector > &lhs, const dg::SparseMatrix< int, T, thrust::host_vector > &rhs)
Form the tensor (Kronecker) product between two matrices in the column index
Definition xspacelib.h:89
Interpolation matrix creation functions.
dg::MIHMatrix_t< typename MPITopology::value_type > reduction(std::array< unsigned, Md > axes, const MPITopology &g_old)
Reduction matrix along given axes.
Definition mpi_prolongation.h:31
dg::MIHMatrix_t< typename MPITopology::value_type > prolongation(const MPITopology &g_new, std::array< unsigned, Md > axes)
Prolongation matrix along given axes / Transpose of reduction.
Definition mpi_prolongation.h:18
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
Creation of projection matrices.
Definition subroutines.h:100
The simplest implementation of aRealTopology.
Definition grid.h:710
A CSR formatted sparse matrix.
Definition sparsematrix.h:96
SparseMatrix transpose() const
Transposition.
Definition sparsematrix.h:353
An abstract base class for Nd-dimensional dG grids.
Definition grid.h:95
RealGrid< real_type, 1 > grid(unsigned u) const
Get axis u as a 1d grid.
Definition grid.h:274
dg::bc bc(unsigned u=0) const
Get boundary condition for axis u.
Definition grid.h:268
Creation functions for integration weights and their inverse.