1#ifndef _DG_XSPACELIB_CUH_
2#define _DG_XSPACELIB_CUH_
4#include <thrust/host_vector.h>
47 thrust::host_vector<int> A_row_offsets(num_rows+1), A_column_indices( num_entries);
48 thrust::host_vector<T> A_values( num_entries);
52 for(
unsigned i=0; i<lhs.
num_rows(); i++)
53 for(
unsigned j=0; j<rhs.
num_rows(); j++)
55 int num_entries_in_row =
58 A_row_offsets[i*rhs.
num_rows()+j+1] =
59 A_row_offsets[i*rhs.
num_rows()+j] + num_entries_in_row;
63 A_column_indices[counter] =
70 return { num_rows, num_cols, A_row_offsets, A_column_indices, A_values};
99 size_t num_entries = 0;
100 for(
unsigned i=0; i<lhs.
num_rows(); i++)
102 int num_entries_in_row =
105 num_entries += num_entries_in_row;
108 thrust::host_vector<int> A_row_offsets(num_rows+1), A_column_indices( num_entries);
109 thrust::host_vector<T> A_values( num_entries);
111 A_row_offsets[0] = 0;
113 for(
unsigned i=0; i<lhs.
num_rows(); i++)
115 int num_entries_in_row =
118 A_row_offsets[i+1] = A_row_offsets[i] + num_entries_in_row;
122 A_column_indices[counter] =
128 return { num_rows, num_cols, A_row_offsets, A_column_indices, A_values};
145template<
class real_type>
157template<
class real_type>
167template<
class real_type>
187template<
class real_type>
198template<
class real_type>
208template<
class real_type>
class intended for the use in throw statements
Definition exceptions.h:83
small class holding a stringstream
Definition exceptions.h:29
A square nxn matrix.
Definition operator.h:31
The discrete legendre trafo class.
#define _ping_
Definition exceptions.h:12
@ backward
backward derivative (cell to the left and current cell)
Definition enums.h:99
@ forward
forward derivative (cell to the right and current cell)
Definition enums.h:98
dg::SquareMatrix< T > invert(const dg::SquareMatrix< T > &in)
Compute inverse of square matrix (alias for dg::create::inverse)
Definition operator.h:691
dg::SparseMatrix< int, T, thrust::host_vector > tensorproduct_cols(const dg::SparseMatrix< int, T, thrust::host_vector > &lhs, const dg::SparseMatrix< int, T, thrust::host_vector > &rhs)
Form the tensor (Kronecker) product between two matrices in the column index
Definition xspacelib.h:89
SquareMatrix< T > tensorproduct(const SquareMatrix< T > &op1, const SquareMatrix< T > &op2)
Form the tensor product between two operators.
Definition operator_tensor.h:25
dg::IHMatrix_t< real_type > backscatter(const RealGrid1d< real_type > &g)
Create a matrix that interpolates values to an equidistant grid ready for visualisation.
Definition xspacelib.h:146
dg::IHMatrix_t< real_type > inv_backscatter(const RealGrid1d< real_type > &g)
Create a matrix that transforms values from an equidistant grid back to a dg grid.
Definition xspacelib.h:188
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
Struct providing coefficients for Discrete Legendre Transformation (DLT) related operations.
Definition dlt.h:20
The simplest implementation of aRealTopology.
Definition grid.h:710
A CSR formatted sparse matrix.
Definition sparsematrix.h:96
size_t num_cols() const
Number of columns in matrix.
Definition sparsematrix.h:276
const Vector< Index > & row_offsets() const
Read row_offsets vector.
Definition sparsematrix.h:287
size_t num_entries() const
Alias for num_nnz.
Definition sparsematrix.h:282
const Vector< Index > & column_indices() const
Read column indices vector.
Definition sparsematrix.h:291
const Vector< Value > & values() const
Read values vector.
Definition sparsematrix.h:295
size_t num_rows() const
Number of rows in matrix.
Definition sparsematrix.h:274
An abstract base class for Nd-dimensional dG grids.
Definition grid.h:95
RealGrid< real_type, 1 > gy() const
Equivalent to grid(1)
Definition grid.h:360
RealGrid< real_type, 1 > gx() const
Equivalent to grid(0)
Definition grid.h:354
unsigned n(unsigned u=0) const
Get number of polynomial coefficients for axis u.
Definition grid.h:262
RealGrid< real_type, 1 > gz() const
Equivalent to grid(2)
Definition grid.h:366
unsigned N(unsigned u=0) const
Get number of cells for axis u.
Definition grid.h:265
Useful typedefs of commonly used types.