Discontinuous Galerkin Library
#include "dg/algorithm.h"
Loading...
Searching...
No Matches
xspacelib.h
Go to the documentation of this file.
1#ifndef _DG_XSPACELIB_CUH_
2#define _DG_XSPACELIB_CUH_
3
4#include <thrust/host_vector.h>
5
6#include <cassert>
7
9#include "grid.h"
10#include "dlt.h"
11#include "operator.h"
12#include "operator_tensor.h"
13
14
20namespace dg{
21
37template< class T>
41{
42 //dimensions of the matrix
43 size_t num_rows = lhs.num_rows()*rhs.num_rows();
44 size_t num_cols = lhs.num_cols()*rhs.num_cols();
45 size_t num_entries = lhs.num_entries()* rhs.num_entries();
46 // allocate output matrix
47 thrust::host_vector<int> A_row_offsets(num_rows+1), A_column_indices( num_entries);
48 thrust::host_vector<T> A_values( num_entries);
49 //LHS x RHS
50 A_row_offsets[0] = 0;
51 int counter = 0;
52 for( unsigned i=0; i<lhs.num_rows(); i++)
53 for( unsigned j=0; j<rhs.num_rows(); j++)
54 {
55 int num_entries_in_row =
56 (lhs.row_offsets()[i+1] - lhs.row_offsets()[i])*
57 (rhs.row_offsets()[j+1] - rhs.row_offsets()[j]);
58 A_row_offsets[i*rhs.num_rows()+j+1] =
59 A_row_offsets[i*rhs.num_rows()+j] + num_entries_in_row;
60 for( int k=lhs.row_offsets()[i]; k<lhs.row_offsets()[i+1]; k++)
61 for( int l=rhs.row_offsets()[j]; l<rhs.row_offsets()[j+1]; l++)
62 {
63 A_column_indices[counter] =
64 lhs.column_indices()[k]*rhs.num_cols() + rhs.column_indices()[l];
65 A_values[counter] = lhs.values()[k]*rhs.values()[l];
66 counter++;
67 }
68 }
69 // allocate output matrix
70 return { num_rows, num_cols, A_row_offsets, A_column_indices, A_values};
71}
72
88template< class T>
92{
93 if( lhs.num_rows() != rhs.num_rows())
94 throw Error( Message(_ping_)<<"lhs and rhs must have same number of rows: "<<lhs.num_rows()<<" rhs "<<rhs.num_rows());
95
96 //dimensions of the matrix
97 size_t num_rows = lhs.num_rows();
98 size_t num_cols = lhs.num_cols()*rhs.num_cols();
99 size_t num_entries = 0;
100 for( unsigned i=0; i<lhs.num_rows(); i++)
101 {
102 int num_entries_in_row =
103 (lhs.row_offsets()[i+1] - lhs.row_offsets()[i])*
104 (rhs.row_offsets()[i+1] - rhs.row_offsets()[i]);
105 num_entries += num_entries_in_row;
106 }
107 // allocate output matrix
108 thrust::host_vector<int> A_row_offsets(num_rows+1), A_column_indices( num_entries);
109 thrust::host_vector<T> A_values( num_entries);
110 //LHS x RHS
111 A_row_offsets[0] = 0;
112 int counter = 0;
113 for( unsigned i=0; i<lhs.num_rows(); i++)
114 {
115 int num_entries_in_row =
116 (lhs.row_offsets()[i+1] - lhs.row_offsets()[i])*
117 (rhs.row_offsets()[i+1] - rhs.row_offsets()[i]);
118 A_row_offsets[i+1] = A_row_offsets[i] + num_entries_in_row;
119 for( int k=lhs.row_offsets()[i]; k<lhs.row_offsets()[i+1]; k++)
120 for( int l=rhs.row_offsets()[i]; l<rhs.row_offsets()[i+1]; l++)
121 {
122 A_column_indices[counter] =
123 lhs.column_indices()[k]*rhs.num_cols() + rhs.column_indices()[l];
124 A_values[counter] = lhs.values()[k]*rhs.values()[l];
125 counter++;
126 }
127 }
128 return { num_rows, num_cols, A_row_offsets, A_column_indices, A_values};
129}
130
131
132namespace create{
135
145template<class real_type>
147{
148 //create equidistant backward transformation
151 dg::SquareMatrix<real_type> backward1d = backwardeq*forward;
152
153 return (dg::IHMatrix_t<real_type>)dg::tensorproduct( g.N(), backward1d);
154}
155
157template<class real_type>
159{
160 //create equidistant backward transformation
161 auto transformX = backscatter( g.gx());
162 auto transformY = backscatter( g.gy());
163 return dg::tensorproduct( transformY, transformX);
164}
165
167template<class real_type>
169{
170 auto transformX = backscatter( g.gx());
171 auto transformY = backscatter( g.gy());
172 auto transformZ = backscatter( g.gz());
173 return dg::tensorproduct( transformZ, dg::tensorproduct(transformY, transformX));
174}
175
187template<class real_type>
189{
190 //create equidistant backward transformation
193 dg::SquareMatrix<real_type> forward1d = backward*dg::invert(backwardeq);
194
195 return (dg::IHMatrix_t<real_type>)dg::tensorproduct( g.N(), forward1d);
196}
198template<class real_type>
200{
201 //create equidistant backward transformation
202 auto transformX = inv_backscatter( g.gx());
203 auto transformY = inv_backscatter( g.gy());
204 return dg::tensorproduct( transformY, transformX);
205}
206
208template<class real_type>
210{
211 auto transformX = inv_backscatter( g.gx());
212 auto transformY = inv_backscatter( g.gy());
213 auto transformZ = inv_backscatter( g.gz());
214 return dg::tensorproduct( transformZ, dg::tensorproduct(transformY, transformX));
215}
216
218
219} //namespace create
220} //namespace dg
221#endif // _DG_XSPACELIB_CUH_
class intended for the use in throw statements
Definition exceptions.h:83
small class holding a stringstream
Definition exceptions.h:29
A square nxn matrix.
Definition operator.h:31
The discrete legendre trafo class.
#define _ping_
Definition exceptions.h:12
base topology classes
@ backward
backward derivative (cell to the left and current cell)
Definition enums.h:99
@ forward
forward derivative (cell to the right and current cell)
Definition enums.h:98
dg::SquareMatrix< T > invert(const dg::SquareMatrix< T > &in)
Compute inverse of square matrix (alias for dg::create::inverse)
Definition operator.h:691
dg::SparseMatrix< int, T, thrust::host_vector > tensorproduct_cols(const dg::SparseMatrix< int, T, thrust::host_vector > &lhs, const dg::SparseMatrix< int, T, thrust::host_vector > &rhs)
Form the tensor (Kronecker) product between two matrices in the column index
Definition xspacelib.h:89
SquareMatrix< T > tensorproduct(const SquareMatrix< T > &op1, const SquareMatrix< T > &op2)
Form the tensor product between two operators.
Definition operator_tensor.h:25
dg::IHMatrix_t< real_type > backscatter(const RealGrid1d< real_type > &g)
Create a matrix that interpolates values to an equidistant grid ready for visualisation.
Definition xspacelib.h:146
dg::IHMatrix_t< real_type > inv_backscatter(const RealGrid1d< real_type > &g)
Create a matrix that transforms values from an equidistant grid back to a dg grid.
Definition xspacelib.h:188
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
Struct providing coefficients for Discrete Legendre Transformation (DLT) related operations.
Definition dlt.h:20
The simplest implementation of aRealTopology.
Definition grid.h:710
A CSR formatted sparse matrix.
Definition sparsematrix.h:96
size_t num_cols() const
Number of columns in matrix.
Definition sparsematrix.h:276
const Vector< Index > & row_offsets() const
Read row_offsets vector.
Definition sparsematrix.h:287
size_t num_entries() const
Alias for num_nnz.
Definition sparsematrix.h:282
const Vector< Index > & column_indices() const
Read column indices vector.
Definition sparsematrix.h:291
const Vector< Value > & values() const
Read values vector.
Definition sparsematrix.h:295
size_t num_rows() const
Number of rows in matrix.
Definition sparsematrix.h:274
An abstract base class for Nd-dimensional dG grids.
Definition grid.h:95
RealGrid< real_type, 1 > gy() const
Equivalent to grid(1)
Definition grid.h:360
RealGrid< real_type, 1 > gx() const
Equivalent to grid(0)
Definition grid.h:354
unsigned n(unsigned u=0) const
Get number of polynomial coefficients for axis u.
Definition grid.h:262
RealGrid< real_type, 1 > gz() const
Equivalent to grid(2)
Definition grid.h:366
unsigned N(unsigned u=0) const
Get number of cells for axis u.
Definition grid.h:265
Useful typedefs of commonly used types.