3#include "dg/algorithm.h"
73template<
class real_type>
77template<
class host_vector>
80 std::vector<host_vector> values( 5, R);
83 dg::blas1::pointwiseDot( 1., jac.
value(0,0), jac.
value(0,0), 1., jac.
value(0,1), jac.
value(0,1), 0., values[1]);
84 dg::blas1::pointwiseDot( 1., jac.
value(1,0), jac.
value(1,0), 1., jac.
value(1,1), jac.
value(1,1), 0., values[2]);
88 dg::blas1::pointwiseDot( 1., jac.
value(0,0), jac.
value(1,0), 1., jac.
value(0,1), jac.
value(1,1), 0., values[4]);
91 metric.values().pop_back();
92 metric.idx(0,0) = 1; metric.values().push_back( values[1]);
93 metric.idx(1,1) = 2; metric.values().push_back( values[2]);
94 metric.idx(2,2) = 3; metric.values().push_back( values[3]);
97 metric.idx(1,0) = metric.idx(0,1) = 4;
98 metric.values().push_back( values[4]);
111template<
class real_type>
123 {tx.n,ty.n},{tx.N,ty.N}, { tx.b, ty.b}),
126 construct( tx.n, tx.N, ty.n, ty.N);
139 virtual void do_set(std::array<unsigned,2> new_n, std::array<unsigned,2> new_N)
override final
142 construct( new_n[0], new_N[0], new_n[1], new_N[1]);
144 virtual void do_set(std::array<dg::bc,2> new_bc)
override final
148 virtual void do_set_pq(std::array<real_type,2> new_x0, std::array<real_type,2> new_x1)
override final
152 void construct(
unsigned nx,
unsigned Nx,
unsigned ny,
unsigned Ny);
153 virtual SparseTensor<thrust::host_vector<real_type> > do_compute_jacobian( ) const override final{
156 virtual SparseTensor<thrust::host_vector<real_type>> do_compute_metric( ) const override final{
159 virtual std::vector<thrust::host_vector<real_type>> do_compute_map()const override final{
return m_map;}
161 std::vector<thrust::host_vector<real_type>> m_map;
171template<
class real_type>
179 RealCurvilinearProductGrid3d(
generator, {
n,
Nx,
bcx}, {
n,
Ny,
bcy}, {0., 2.*
M_PI, 1,
Nz,
bcz}){}
187 {tx.N, ty.N,
gz.N()},{ tx.b, ty.b,
gz.bcx()}), m_handle(
generator)
190 constructPerp( this->
nx(), this->
Nx(), this->
ny(), this->
Ny());
191 constructParallel(this->
nz(), this->
Nz());
200 virtual
void do_set( std::array<
unsigned,3> new_n, std::array<
unsigned,3> new_N) override final
202 auto old_n = this->
get_n(), old_N = this->
get_N();
204 if( !( new_n[0] == old_n[0] && new_N[0] == old_N[0] &&
205 new_n[1] == old_n[1] && new_N[1] == old_N[1] ) )
206 constructPerp( new_n[0], new_N[0], new_n[1],new_N[1]);
207 constructParallel(new_n[2],new_N[2]);
209 virtual void do_set(std::array<dg::bc,3> new_bc)
override final
213 virtual void do_set_pq(std::array<real_type,3> new_x0, std::array<real_type,3> new_x1)
override final
218 void constructParallel(
unsigned nz,
unsigned Nz)
222 unsigned size2d = this->
nx()*this->
ny()*this->
Nx()*this->
Ny();
224 for(
unsigned r=0; r<6;r++)
226 m_map[0].resize(
size);
227 m_map[1].resize(
size);
229 for(
unsigned k=1; k<
nz*
Nz; k++)
230 for(
unsigned i=0; i<size2d; i++)
232 for(
unsigned r=0; r<6; r++)
233 m_jac.
values()[r][k*size2d+i] = m_jac.
values()[r][(k-1)*size2d+i];
234 m_map[0][k*size2d+i] = m_map[0][(k-1)*size2d+i];
235 m_map[1][k*size2d+i] = m_map[1][(k-1)*size2d+i];
239 void constructPerp(
unsigned nx,
unsigned Nx,
unsigned ny,
unsigned Ny)
245 m_jac = SparseTensor< thrust::host_vector<real_type>>( x_vec);
246 m_jac.
values().resize( 6);
247 m_handle->generate( x_vec, y_vec, m_map[0], m_map[1], m_jac.
values()[2], m_jac.
values()[3], m_jac.
values()[4], m_jac.
values()[5]);
248 m_jac.
idx(0,0) = 2, m_jac.
idx(0,1) = 3, m_jac.
idx(1,0)=4, m_jac.
idx(1,1) = 5;
250 virtual SparseTensor<thrust::host_vector<real_type> > do_compute_jacobian( ) const override final{
253 virtual SparseTensor<thrust::host_vector<real_type> > do_compute_metric( ) const override final
255 return detail::square( m_jac, m_map[0], m_handle->isOrthogonal());
257 virtual std::vector<thrust::host_vector<real_type> > do_compute_map()const override final{
return m_map;}
258 std::vector<thrust::host_vector<real_type> > m_map;
259 SparseTensor<thrust::host_vector<real_type> > m_jac;
274template<
class real_type>
276 dg::
aRealGeometry2d<real_type>( std::array{g.gx(), g.gy()} ), m_handle(g.generator())
278 g.
set( {this->nx(), this->ny(), 1}, {this->Nx(), this->Ny(),1});
288template<
class real_type>
289void RealCurvilinearGrid2d<real_type>::construct(
unsigned nx,
unsigned Nx,
unsigned ny,
unsigned Ny)
291 RealCurvilinearProductGrid3d<real_type> g( *m_handle, {nx,Nx,this->bcx()}, {ny,Ny,this->bcy()}, {0., 2.*
M_PI, 1,1});
292 *
this = RealCurvilinearGrid2d<real_type>(g);
294template<
class real_type>
DG_DEVICE double cooZ3d(double x, double y, double z)
DG_DEVICE double cooX1d(double x)
void copy(const ContainerTypeIn &source, ContainerTypeOut &target)
void pointwiseDot(value_type alpha, const ContainerType1 &x1, const ContainerType2 &x2, value_type1 beta, ContainerType &y)
void scal(ContainerType &x, value_type alpha)
void pointwiseDivide(value_type alpha, const ContainerType1 &x1, const ContainerType2 &x2, value_type1 beta, ContainerType &y)
auto evaluate(Functor &&f, const Topology &g)
@ square
closed flux surfaces centered around an O-point and bordered by a square with four X-points in the co...
CurvilinearProductGrid3d CurvilinearProductGrid3d
Definition curvilinear.h:268
CurvilinearGrid2d CurvilinearGrid2d
Definition curvilinear.h:267
int idx(unsigned i, unsigned j) const
std::vector< container > & values()
const container & value(size_t i, size_t j) const
SparseTensor< thrust::host_vector< real_type > > jacobian() const
SparseTensor< thrust::host_vector< real_type > > metric() const
std::vector< thrust::host_vector< real_type > > map() const
std::array< unsigned, Nd > get_n() const
unsigned n(unsigned u=0) const
std::array< unsigned, Nd > get_N() const
std::enable_if_t<(Md==1), void > set(unsigned new_n, unsigned new_Nx)
virtual void do_set(std::array< unsigned, Nd > new_n, std::array< unsigned, Nd > new_N)=0
RealGrid< real_type, 1 > gz() const
A two-dimensional grid based on curvilinear coordinates.
Definition curvilinear.h:113
RealCurvilinearGrid2d(const aRealGenerator2d< real_type > &generator, unsigned n, unsigned Nx, unsigned Ny, dg::bc bcx=dg::DIR, bc bcy=dg::PER)
Construct a 2D grid.
Definition curvilinear.h:116
const aRealGenerator2d< real_type > & generator() const
read access to the generator
Definition curvilinear.h:136
RealCurvilinearGrid2d(const aRealGenerator2d< real_type > &generator, Topology1d tx, Topology1d ty)
Construct the computational space as the product of two 1d grids.
Definition curvilinear.h:119
virtual RealCurvilinearGrid2d * clone() const override final
Definition curvilinear.h:137
RealCurvilinearGrid2d(RealCurvilinearProductGrid3d< real_type > g)
Explicitly convert 3d product grid to the perpendicular grid.
RealCurvilinearGrid2d()=default
A 2x1 curvilinear product space grid.
Definition curvilinear.h:173
const aRealGenerator2d< real_type > & generator() const
read access to the generator
Definition curvilinear.h:196
RealCurvilinearProductGrid3d(const aRealGenerator2d< real_type > &generator, unsigned n, unsigned Nx, unsigned Ny, unsigned Nz, bc bcx=dg::DIR, bc bcy=dg::PER, bc bcz=dg::PER)
Construct a 3D grid.
Definition curvilinear.h:178
virtual RealCurvilinearProductGrid3d * clone() const override final
Definition curvilinear.h:197
RealCurvilinearGrid2d< real_type > perpendicular_grid
Definition curvilinear.h:174
RealCurvilinearProductGrid3d()=default
RealCurvilinearProductGrid3d(const aRealGenerator2d< real_type > &generator, Topology1d tx, Topology1d ty, RealGrid1d< real_type > gz)
Construct the computational space as the product of three 1d grids.
Definition curvilinear.h:182
Helper class for construction.
Definition curvilinear.h:65
unsigned n
Definition curvilinear.h:66
bc b
Definition curvilinear.h:68
unsigned N
Definition curvilinear.h:67
The abstract generator base class.
Definition generator.h:20