Extension: Geometries
#include "dg/geometries/geometries.h"
Loading...
Searching...
No Matches
fieldaligned.h
Go to the documentation of this file.
1#pragma once
2#include <cmath>
3#include <array>
4
5#include "dg/algorithm.h"
6#include "magnetic_field.h"
7#include "fluxfunctions.h"
8#include "curvilinear.h"
9
10namespace dg{
11namespace geo{
12
27
31
36namespace detail{
37
38static void parse_method( std::string method, std::string& i, std::string& p, std::string& f)
39{
40 f = "dg";
41 if( method == "dg") i = "dg", p = "dg";
42 else if( method == "linear") i = "linear", p = "dg";
43 else if( method == "cubic") i = "cubic", p = "dg";
44 else if( method == "nearest") i = "nearest", p = "dg";
45 else if( method == "dg-nearest") i = "dg", p = "nearest";
46 else if( method == "linear-nearest") i = "linear", p = "nearest";
47 else if( method == "cubic-nearest") i = "cubic", p = "nearest";
48 else if( method == "nearest-nearest") i = "nearest", p = "nearest";
49 else if( method == "dg-linear") i = "dg", p = "linear";
50 else if( method == "linear-linear") i = "linear", p = "linear";
51 else if( method == "cubic-linear") i = "cubic", p = "linear";
52 else if( method == "nearest-linear") i = "nearest", p = "linear";
53 else if( method == "dg-equi") i = "dg", p = "dg", f = "equi";
54 else if( method == "linear-equi") i = "linear", p = "dg", f = "equi";
55 else if( method == "cubic-equi") i = "cubic", p = "dg", f = "equi";
56 else if( method == "nearest-equi") i = "nearest", p = "dg", f = "equi";
57 else if( method == "dg-equi-nearest") i = "dg", p = "nearest", f = "equi";
58 else if( method == "linear-equi-nearest") i = "linear", p = "nearest", f = "equi";
59 else if( method == "cubic-equi-nearest") i = "cubic", p = "nearest", f = "equi";
60 else if( method == "nearest-equi-nearest") i = "nearest", p = "nearest", f = "equi";
61 else if( method == "dg-equi-linear") i = "dg", p = "linear", f = "equi";
62 else if( method == "linear-equi-linear") i = "linear", p = "linear", f = "equi";
63 else if( method == "cubic-equi-linear") i = "cubic", p = "linear", f = "equi";
64 else if( method == "nearest-equi-linear") i = "nearest", p = "linear", f = "equi";
65 else
66 throw Error( Message(_ping_) << "The method "<< method << " is not recognized\n");
67}
68
69struct DSFieldCylindrical3
70{
71 DSFieldCylindrical3( const dg::geo::CylindricalVectorLvl0& v): m_v(v){}
72 void operator()( double t, const std::array<double,3>& y,
73 std::array<double,3>& yp) const {
74 double R = y[0], Z = y[1];
75 double vz = m_v.z()(R, Z);
76 yp[0] = m_v.x()(R, Z)/vz;
77 yp[1] = m_v.y()(R, Z)/vz;
78 yp[2] = 1./vz;
79 }
80 private:
82};
83
84struct DSFieldCylindrical4
85{
86 DSFieldCylindrical4( const dg::geo::CylindricalVectorLvl1& v): m_v(v){}
87 void operator()( double t, const std::array<double,3>& y,
88 std::array<double,3>& yp) const {
89 double R = y[0], Z = y[1];
90 double vx = m_v.x()(R,Z);
91 double vy = m_v.y()(R,Z);
92 double vz = m_v.z()(R,Z);
93 double divvvz = m_v.divvvz()(R,Z);
94 yp[0] = vx/vz;
95 yp[1] = vy/vz;
96 yp[2] = divvvz*y[2];
97 }
98
99 private:
101};
102
103struct DSField
104{
105 DSField() = default;
106 //z component of v may not vanish
107 DSField( const dg::geo::CylindricalVectorLvl1& v,
108 const dg::aGeometry2d& g ):
109 m_g(g)
110 {
111 dg::HVec v_zeta, v_eta;
112 dg::pushForwardPerp( v.x(), v.y(), v_zeta, v_eta, g);
113 dg::HVec vx = dg::pullback( v.x(), g);
114 dg::HVec vy = dg::pullback( v.y(), g);
115 dg::HVec vz = dg::pullback( v.z(), g);
116 dg::HVec divvvz = dg::pullback( v.divvvz(), g);
117 dg::blas1::pointwiseDivide(v_zeta, vz, v_zeta);
118 dg::blas1::pointwiseDivide(v_eta, vz, v_eta);
119 dzetadphi_ = dg::forward_transform( v_zeta, g );
120 detadphi_ = dg::forward_transform( v_eta, g );
121 dvdphi_ = dg::forward_transform( divvvz, g );
122 }
123 //interpolate the vectors given in the constructor on the given point
124 void operator()(double t, const std::array<double,3>& y, std::array<double,3>& yp) const
125 {
126 // shift point into domain
127 yp[0] = interpolate(dg::lspace, dzetadphi_, y[0], y[1], *m_g);
128 yp[1] = interpolate(dg::lspace, detadphi_, y[0], y[1], *m_g);
129 yp[2] = interpolate(dg::lspace, dvdphi_, y[0], y[1], *m_g)*y[2];
130 }
131 private:
132 thrust::host_vector<double> dzetadphi_, detadphi_, dvdphi_;
134};
135
136//used in constructor of Fieldaligned
137template<class real_type>
138void integrate_all_fieldlines2d( const dg::geo::CylindricalVectorLvl1& vec,
139 const dg::aRealGeometry2d<real_type>& grid_field,
140 const dg::aRealTopology2d<real_type>& grid_evaluate,
141 std::array<thrust::host_vector<real_type>,3>& yp,
142 const thrust::host_vector<double>& vol0,
143 thrust::host_vector<real_type>& yp2b,
144 thrust::host_vector<bool>& in_boxp,
145 real_type deltaPhi, real_type eps)
146{
147 //grid_field contains the global geometry for the field and the boundaries
148 //grid_evaluate contains the points to actually integrate
149 std::array<thrust::host_vector<real_type>,3> y{
150 dg::evaluate( dg::cooX2d, grid_evaluate),
151 dg::evaluate( dg::cooY2d, grid_evaluate),
152 vol0
153 };
154 yp.fill(dg::evaluate( dg::zero, grid_evaluate));
155 //construct field on high polynomial grid, then integrate it
156 dg::geo::detail::DSField field;
157 if( !dynamic_cast<const dg::CartesianGrid2d*>( &grid_field))
158 field = dg::geo::detail::DSField( vec, grid_field);
159
160 //field in case of cartesian grid
161 dg::geo::detail::DSFieldCylindrical4 cyl_field(vec);
162 const unsigned size = grid_evaluate.size();
164 "Dormand-Prince-7-4-5", std::array<real_type,3>{0,0,0});
166 if( dynamic_cast<const dg::CartesianGrid2d*>( &grid_field))
168 cyl_field, dg::pid_control, dg::fast_l2norm, eps, 1e-10);
169 else
171 field, dg::pid_control, dg::fast_l2norm, eps, 1e-10);
172
173 for( unsigned i=0; i<size; i++)
174 {
175 std::array<real_type,3> coords{y[0][i],y[1][i],y[2][i]}, coordsP;
176 //x,y,s
177 real_type phi1 = deltaPhi;
178 odeint.set_dt( deltaPhi/2.);
179 odeint.integrate( 0, coords, phi1, coordsP);
180 yp[0][i] = coordsP[0], yp[1][i] = coordsP[1], yp[2][i] = coordsP[2];
181 }
182 yp2b.assign( grid_evaluate.size(), deltaPhi); //allocate memory for output
183 in_boxp.resize( yp2b.size());
184 //Now integrate again but this time find the boundary distance
185 for( unsigned i=0; i<size; i++)
186 {
187 std::array<real_type,3> coords{y[0][i],y[1][i],y[2][i]}, coordsP;
188 in_boxp[i] = grid_field.contains( std::array{yp[0][i], yp[1][i]}) ? true : false;
189 if( false == in_boxp[i])
190 {
191 //x,y,s
192 real_type phi1 = deltaPhi;
193 odeint.integrate_in_domain( 0., coords, phi1, coordsP, 0., (const
194 dg::aRealTopology2d<real_type>&)grid_field, eps);
195 yp2b[i] = phi1;
196 }
197 }
198}
199
200
201}//namespace detail
203
257
269template<class ProductGeometry, class IMatrix, class container >
271{
272
278 template <class Limiter>
280 const ProductGeometry& grid,
283 Limiter limit = FullLimiter(),
284 double eps = 1e-5,
285 unsigned mx=12, unsigned my=12,
286 double deltaPhi = -1,
287 std::string interpolation_method = "linear-nearest",
288 bool benchmark=true
289 ):
290 Fieldaligned( dg::geo::createBHat(vec),
291 grid, bcx, bcy, limit, eps, mx, my, deltaPhi, interpolation_method, benchmark)
292 {
293 }
294
298 template <class Limiter>
300 const ProductGeometry& grid,
303 Limiter limit = FullLimiter(),
304 double eps = 1e-5,
305 unsigned mx=12, unsigned my=12,
306 double deltaPhi = -1,
307 std::string interpolation_method = "linear-nearest",
308 bool benchmark=true
309 );
315 template<class ...Params>
316 void construct( Params&& ...ps)
317 {
318 //construct and swap
319 *this = Fieldaligned( std::forward<Params>( ps)...);
320 }
321
322 dg::bc bcx()const{
323 return m_bcx;
324 }
325 dg::bc bcy()const{
326 return m_bcy;
327 }
328
329
339 void set_boundaries( dg::bc bcz, double left, double right)
340 {
341 m_bcz = bcz;
342 const dg::Grid1d g2d( 0, 1, 1, m_perp_size);
343 m_left = dg::evaluate( dg::CONSTANT(left), g2d);
344 m_right = dg::evaluate( dg::CONSTANT(right),g2d);
345 }
346
356 void set_boundaries( dg::bc bcz, const container& left, const container& right)
357 {
358 m_bcz = bcz;
359 m_left = left;
360 m_right = right;
361 }
362
373 void set_boundaries( dg::bc bcz, const container& global, double scal_left, double scal_right)
374 {
375 dg::split( global, m_f, *m_g);
376 dg::blas1::axpby( scal_left, m_f[0], 0, m_left);
377 dg::blas1::axpby( scal_right, m_f[m_Nz-1], 0, m_right);
378 m_bcz = bcz;
379 }
380
389 void operator()(enum whichMatrix which, const container& in, container& out);
390
391 double deltaPhi() const{return m_deltaPhi;}
394 const container& hbm()const {
395 return m_hbm;
396 }
399 const container& hbp()const {
400 return m_hbp;
401 }
404 const container& sqrtG()const {
405 return m_G;
406 }
409 const container& sqrtGm()const {
410 return m_Gm;
411 }
414 const container& sqrtGp()const {
415 return m_Gp;
416 }
419 const container& bphi()const {
420 return m_bphi;
421 }
424 const container& bphiM()const {
425 return m_bphiM;
426 }
429 const container& bphiP()const {
430 return m_bphiP;
431 }
434 const container& bbm()const {
435 return m_bbm;
436 }
439 const container& bbo()const {
440 return m_bbo;
441 }
444 const container& bbp()const {
445 return m_bbp;
446 }
448 const ProductGeometry& grid()const{return *m_g;}
449
463 container interpolate_from_coarse_grid( const ProductGeometry& grid_coarse, const container& coarse);
473 void integrate_between_coarse_grid( const ProductGeometry& grid_coarse, const container& coarse, container& out );
474
475
504 template< class BinaryOp, class UnaryOp>
505 container evaluate( BinaryOp binary, UnaryOp unary,
506 unsigned p0, unsigned rounds) const;
507
509 std::string method() const{return m_interpolation_method;}
510
511 private:
512 void ePlus( enum whichMatrix which, const container& in, container& out);
513 void eMinus(enum whichMatrix which, const container& in, container& out);
514 void zero( enum whichMatrix which, const container& in, container& out);
515 IMatrix m_plus, m_zero, m_minus, m_plusT, m_minusT; //2d interpolation matrices
516 container m_hbm, m_hbp; //3d size
517 container m_G, m_Gm, m_Gp; // 3d size
518 container m_bphi, m_bphiM, m_bphiP; // 3d size
519 container m_bbm, m_bbp, m_bbo; //3d size masks
520
521 container m_left, m_right; //perp_size
522 container m_limiter; //perp_size
523 container m_ghostM, m_ghostP; //perp_size
524 unsigned m_Nz, m_perp_size;
525 dg::bc m_bcx, m_bcy, m_bcz;
526 std::vector<dg::View<const container>> m_f;
527 std::vector<dg::View< container>> m_temp;
530 double m_deltaPhi;
531 std::string m_interpolation_method;
532
533 bool m_have_adjoint = false;
534 void updateAdjoint( )
535 {
536 m_plusT = m_plus.transpose();
537 m_minusT = m_minus.transpose();
538 m_have_adjoint = true;
539 }
540};
541
543
545template<class Geometry, class IMatrix, class container>
546template <class Limiter>
549 const Geometry& grid,
550 dg::bc bcx, dg::bc bcy, Limiter limit, double eps,
551 unsigned mx, unsigned my, double deltaPhi, std::string interpolation_method, bool benchmark) :
552 m_g(grid),
553 m_interpolation_method(interpolation_method)
554{
555
556 std::string inter_m, project_m, fine_m;
557 detail::parse_method( interpolation_method, inter_m, project_m, fine_m);
558 if( benchmark) std::cout << "# Interpolation method: \""<<inter_m << "\" projection method: \""<<project_m<<"\" fine grid \""<<fine_m<<"\"\n";
560 if( (grid.bcx() == PER && bcx != PER) || (grid.bcx() != PER && bcx == PER) )
561 throw( dg::Error(dg::Message(_ping_)<<"Fieldaligned: Got conflicting periodicity in x. The grid says "<<bc2str(grid.bcx())<<" while the parameter says "<<bc2str(bcx)));
562 if( (grid.bcy() == PER && bcy != PER) || (grid.bcy() != PER && bcy == PER) )
563 throw( dg::Error(dg::Message(_ping_)<<"Fieldaligned: Got conflicting boundary conditions in y. The grid says "<<bc2str(grid.bcy())<<" while the parameter says "<<bc2str(bcy)));
564 m_Nz=grid.Nz(), m_bcx = bcx, m_bcy = bcy, m_bcz=grid.bcz();
565 if( deltaPhi <=0) deltaPhi = grid.hz();
567 // grid_trafo -> grid_equi -> grid_fine -> grid_equi -> grid_trafo
568 dg::Timer t;
569 if( benchmark) t.tic();
570 dg::ClonePtr<dg::aGeometry2d> grid_transform( grid.perp_grid()) ;
571 // We do not need metric of grid_equidist or or grid_fine
572 dg::RealGrid2d<double> grid_equidist( *grid_transform) ;
573 dg::RealGrid2d<double> grid_fine( *grid_transform);
574 grid_equidist.set( 1, grid.gx().size(), grid.gy().size());
575 dg::ClonePtr<dg::aGeometry2d> grid_magnetic = grid_transform;//INTEGRATE HIGH ORDER GRID
576 grid_magnetic->set( grid_transform->n() < 3 ? 4 : 7, grid_magnetic->Nx(), grid_magnetic->Ny());
577 // For project method "const" we round up to the nearest multiple of n
578 if( project_m != "dg" && fine_m == "dg")
579 {
580 unsigned rx = mx % grid.nx(), ry = my % grid.ny();
581 if( 0 != rx || 0 != ry)
582 {
583 std::cerr << "#Warning: for projection method \"const\" mx and my must be multiples of nx and ny! Rounding up for you ...\n";
584 mx = mx + grid.nx() - rx;
585 my = my + grid.ny() - ry;
586 }
587 }
588 if( fine_m == "equi")
589 grid_fine = grid_equidist;
590 grid_fine.multiplyCellNumbers((double)mx, (double)my);
591 if( benchmark)
592 {
593 t.toc();
594 std::cout << "# DS: High order grid gen took: "<<t.diff()<<"\n";
595 t.tic();
596 }
598 std::array<thrust::host_vector<double>,3> yp_trafo, ym_trafo, yp, ym;
599 thrust::host_vector<bool> in_boxp, in_boxm;
600 thrust::host_vector<double> hbp, hbm;
601 thrust::host_vector<double> vol = dg::tensor::volume(grid.metric()), vol2d0;
602 auto vol2d = dg::split( vol, grid);
603 dg::assign( vol2d[0], vol2d0);
604 detail::integrate_all_fieldlines2d( vec, *grid_magnetic, *grid_transform,
605 yp_trafo, vol2d0, hbp, in_boxp, deltaPhi, eps);
606 detail::integrate_all_fieldlines2d( vec, *grid_magnetic, *grid_transform,
607 ym_trafo, vol2d0, hbm, in_boxm, -deltaPhi, eps);
608 dg::HVec Xf = dg::evaluate( dg::cooX2d, grid_fine);
609 dg::HVec Yf = dg::evaluate( dg::cooY2d, grid_fine);
610 {
612 *grid_transform, dg::NEU, dg::NEU, grid_transform->n() < 3 ? "cubic" : "dg");
613 yp.fill(dg::evaluate( dg::zero, grid_fine));
614 ym = yp;
615 for( int i=0; i<2; i++) //only R and Z get interpolated
616 {
617 dg::blas2::symv( interpolate, yp_trafo[i], yp[i]);
618 dg::blas2::symv( interpolate, ym_trafo[i], ym[i]);
619 }
620 } // release memory for interpolate matrix
621 if( benchmark)
622 {
623 t.toc();
624 std::cout << "# DS: Computing all points took: "<<t.diff()<<"\n";
625 t.tic();
626 }
628 { // free memory after use
629 dg::IHMatrix fine, projection, multi, temp;
630 if( project_m == "dg")
631 projection = dg::create::projection( *grid_transform, grid_fine);
632 else
633 {
634 projection = dg::create::inv_backproject( *grid_transform)*
635 dg::create::projection( grid_equidist, grid_fine, project_m);
636 }
637 std::array<dg::HVec*,3> xcomp{ &yp[0], &Xf, &ym[0]};
638 std::array<dg::HVec*,3> ycomp{ &yp[1], &Yf, &ym[1]};
639 std::array<IMatrix*,3> result{ &m_plus, &m_zero, &m_minus};
640
641 for( unsigned u=0; u<3; u++)
642 {
643 if( inter_m == "dg")
644 {
645 *result[u] = projection*dg::create::interpolation( *xcomp[u], *ycomp[u],
646 *grid_transform, bcx, bcy, "dg");
647 }
648 else
649 {
650 *result[u] = projection * dg::create::interpolation( *xcomp[u], *ycomp[u],
651 grid_equidist, bcx, bcy, inter_m) * dg::create::backproject(
652 *grid_transform); // from dg to equidist
653 }
654 }
655 }
656
657 if( benchmark)
658 {
659 t.toc();
660 std::cout << "# DS: Multiplication PI took: "<<t.diff()<<"\n";
661 }
663 dg::HVec hbphi( yp_trafo[2]), hbphiP(hbphi), hbphiM(hbphi);
664 hbphi = dg::pullback( vec.z(), *grid_transform);
665 //this is a pullback bphi( R(zeta, eta), Z(zeta, eta)):
666 if( dynamic_cast<const dg::CartesianGrid2d*>( grid_transform.get()))
667 {
668 for( unsigned i=0; i<hbphiP.size(); i++)
669 {
670 hbphiP[i] = vec.z()(yp_trafo[0][i], yp_trafo[1][i]);
671 hbphiM[i] = vec.z()(ym_trafo[0][i], ym_trafo[1][i]);
672 }
673 }
674 else
675 {
676 dg::HVec Ihbphi = dg::pullback( vec.z(), *grid_magnetic);
677 dg::HVec Lhbphi = dg::forward_transform( Ihbphi, *grid_magnetic);
678 for( unsigned i=0; i<yp_trafo[0].size(); i++)
679 {
680 hbphiP[i] = dg::interpolate( dg::lspace, Lhbphi, yp_trafo[0][i],
681 yp_trafo[1][i], *grid_magnetic);
682 hbphiM[i] = dg::interpolate( dg::lspace, Lhbphi, ym_trafo[0][i],
683 ym_trafo[1][i], *grid_magnetic);
684 }
685 }
686 dg::assign3dfrom2d( hbphi, m_bphi, grid);
687 dg::assign3dfrom2d( hbphiM, m_bphiM, grid);
688 dg::assign3dfrom2d( hbphiP, m_bphiP, grid);
689
690 dg::assign3dfrom2d( yp_trafo[2], m_Gp, grid);
691 dg::assign3dfrom2d( ym_trafo[2], m_Gm, grid);
692 // The weights don't matter since they fall out in Div and Lap anyway
693 // But they are good for testing
694 m_G = vol;
695 container weights = dg::create::weights( grid);
696 dg::blas1::pointwiseDot( m_G, weights, m_G);
697 dg::blas1::pointwiseDot( m_Gp, weights, m_Gp);
698 dg::blas1::pointwiseDot( m_Gm, weights, m_Gm);
699
701 m_f = dg::split( (const container&)m_hbm, grid);
702 m_temp = dg::split( m_hbm, grid);
703 dg::assign3dfrom2d( hbp, m_hbp, grid);
704 dg::assign3dfrom2d( hbm, m_hbm, grid);
705 dg::blas1::scal( m_hbm, -1.);
706
708 thrust::host_vector<double> bbm( in_boxp.size(),0.), bbo(bbm), bbp(bbm);
709 for( unsigned i=0; i<in_boxp.size(); i++)
710 {
711 if( !in_boxp[i] && !in_boxm[i])
712 bbo[i] = 1.;
713 else if( !in_boxp[i] && in_boxm[i])
714 bbp[i] = 1.;
715 else if( in_boxp[i] && !in_boxm[i])
716 bbm[i] = 1.;
717 // else all are 0
718 }
719 dg::assign3dfrom2d( bbm, m_bbm, grid);
720 dg::assign3dfrom2d( bbo, m_bbo, grid);
721 dg::assign3dfrom2d( bbp, m_bbp, grid);
722
723 m_deltaPhi = deltaPhi; // store for evaluate
724
726 m_perp_size = grid_transform->size();
727 dg::assign( dg::pullback(limit, *grid_transform), m_limiter);
728 dg::assign( dg::evaluate(dg::zero, *grid_transform), m_left);
729 m_ghostM = m_ghostP = m_right = m_left;
730}
731
732
733template<class G, class I, class container>
735 const G& grid, const container& in)
736{
737 //I think we need grid as input to split input vector and we need to interpret
738 //the grid nodes as node centered not cell-centered!
739 //idea: apply I+/I- cphi - 1 times in each direction and then apply interpolation formula
740 assert( m_g->Nz() % grid.Nz() == 0);
741 unsigned Nz_coarse = grid.Nz(), Nz = m_g->Nz();
742 unsigned cphi = Nz / Nz_coarse;
743
744 container out = dg::evaluate( dg::zero, *m_g);
745 container helper = dg::evaluate( dg::zero, *m_g);
746 dg::split( helper, m_temp, *m_g);
747 std::vector<dg::View< container>> out_split = dg::split( out, *m_g);
748 std::vector<dg::View< const container>> in_split = dg::split( in, grid);
749 for ( int i=0; i<(int)Nz_coarse; i++)
750 {
751 //1. copy input vector to appropriate place in output
752 dg::blas1::copy( in_split[i], out_split[i*cphi]);
753 dg::blas1::copy( in_split[i], m_temp[i*cphi]);
754 }
755 //Step 1 needs to finish so that m_temp contains values everywhere
756 //2. Now apply plus and minus T to fill in the rest
757 for ( int i=0; i<(int)Nz_coarse; i++)
758 {
759 for( int j=1; j<(int)cphi; j++)
760 {
762 dg::blas2::symv( m_minus, out_split[i*cphi+j-1], out_split[i*cphi+j]);
764 dg::blas2::symv( m_plus, m_temp[(i*cphi+cphi+1-j)%Nz], m_temp[i*cphi+cphi-j]);
765 }
766 }
767 //3. Now add up with appropriate weights
768 for( int i=0; i<(int)Nz_coarse; i++)
769 for( int j=1; j<(int)cphi; j++)
770 {
771 double alpha = (double)(cphi-j)/(double)cphi;
772 double beta = (double)j/(double)cphi;
773 dg::blas1::axpby( alpha, out_split[i*cphi+j], beta, m_temp[i*cphi+j], out_split[i*cphi+j]);
774 }
775 return out;
776}
777template<class G, class I, class container>
778void Fieldaligned<G, I,container>::integrate_between_coarse_grid( const G& grid, const container& in, container& out)
779{
780 assert( m_g->Nz() % grid.Nz() == 0);
781 unsigned Nz_coarse = grid.Nz(), Nz = m_g->Nz();
782 unsigned cphi = Nz / Nz_coarse;
783
784 out = in;
785 container helperP( in), helperM(in), tempP(in), tempM(in);
786
787 //1. Apply plus and minus T and sum up
788 for( int j=1; j<(int)cphi; j++)
789 {
791 dg::blas2::symv( m_minus, helperP, tempP);
792 dg::blas1::axpby( (double)(cphi-j)/(double)cphi, tempP, 1., out );
793 helperP.swap(tempP);
795 dg::blas2::symv( m_plus, helperM, tempM);
796 dg::blas1::axpby( (double)(cphi-j)/(double)cphi, tempM, 1., out );
797 helperM.swap(tempM);
798 }
799 dg::blas1::scal( out, 1./(double)cphi);
800}
801
802template<class G, class I, class container>
803void Fieldaligned<G, I, container >::operator()(enum whichMatrix which, const container& f, container& fe)
804{
805 if( which == einsPlus || which == einsMinusT ) ePlus( which, f, fe);
806 else if(which == einsMinus || which == einsPlusT ) eMinus( which, f, fe);
807 else if(which == zeroMinus || which == zeroPlus ||
808 which == zeroMinusT|| which == zeroPlusT ||
809 which == zeroForw ) zero( which, f, fe);
810}
811
812template< class G, class I, class container>
813void Fieldaligned<G, I, container>::zero( enum whichMatrix which,
814 const container& f, container& f0)
815{
816 dg::split( f, m_f, *m_g);
817 dg::split( f0, m_temp, *m_g);
818 //1. compute 2d interpolation in every plane and store in m_temp
819 for( unsigned i0=0; i0<m_Nz; i0++)
820 {
821 if(which == zeroPlus)
822 dg::blas2::symv( m_plus, m_f[i0], m_temp[i0]);
823 else if(which == zeroMinus)
824 dg::blas2::symv( m_minus, m_f[i0], m_temp[i0]);
825 else if(which == zeroPlusT)
826 {
827 if( ! m_have_adjoint) updateAdjoint( );
828 dg::blas2::symv( m_plusT, m_f[i0], m_temp[i0]);
829 }
830 else if(which == zeroMinusT)
831 {
832 if( ! m_have_adjoint) updateAdjoint( );
833 dg::blas2::symv( m_minusT, m_f[i0], m_temp[i0]);
834 }
835 else if( which == zeroForw)
836 {
837 if ( m_interpolation_method != "dg" )
838 {
839 dg::blas2::symv( m_zero, m_f[i0], m_temp[i0]);
840 }
841 else
842 dg::blas1::copy( m_f[i0], m_temp[i0]);
843 }
844 }
845}
846template< class G, class I, class container>
847void Fieldaligned<G, I, container>::ePlus( enum whichMatrix which,
848 const container& f, container& fpe)
849{
850 dg::split( f, m_f, *m_g);
851 dg::split( fpe, m_temp, *m_g);
852 //1. compute 2d interpolation in every plane and store in m_temp
853 for( unsigned i0=0; i0<m_Nz; i0++)
854 {
855 unsigned ip = (i0==m_Nz-1) ? 0:i0+1;
856 if(which == einsPlus)
857 dg::blas2::symv( m_plus, m_f[ip], m_temp[i0]);
858 else if(which == einsMinusT)
859 {
860 if( ! m_have_adjoint) updateAdjoint( );
861 dg::blas2::symv( m_minusT, m_f[ip], m_temp[i0]);
862 }
863 }
864 //2. apply right boundary conditions in last plane
865 unsigned i0=m_Nz-1;
866 if( m_bcz != dg::PER)
867 {
868 if( m_bcz == dg::DIR || m_bcz == dg::NEU_DIR)
869 dg::blas1::axpby( 2, m_right, -1., m_f[i0], m_ghostP);
870 if( m_bcz == dg::NEU || m_bcz == dg::DIR_NEU)
871 dg::blas1::axpby( m_deltaPhi, m_right, 1., m_f[i0], m_ghostP);
872 //interlay ghostcells with periodic cells: L*g + (1-L)*fpe
873 dg::blas1::axpby( 1., m_ghostP, -1., m_temp[i0], m_ghostP);
874 dg::blas1::pointwiseDot( 1., m_limiter, m_ghostP, 1., m_temp[i0]);
875 }
876}
877
878template< class G, class I, class container>
879void Fieldaligned<G, I, container>::eMinus( enum whichMatrix which,
880 const container& f, container& fme)
881{
882 dg::split( f, m_f, *m_g);
883 dg::split( fme, m_temp, *m_g);
884 //1. compute 2d interpolation in every plane and store in m_temp
885 for( unsigned i0=0; i0<m_Nz; i0++)
886 {
887 unsigned im = (i0==0) ? m_Nz-1:i0-1;
888 if(which == einsPlusT)
889 {
890 if( ! m_have_adjoint) updateAdjoint( );
891 dg::blas2::symv( m_plusT, m_f[im], m_temp[i0]);
892 }
893 else if (which == einsMinus)
894 dg::blas2::symv( m_minus, m_f[im], m_temp[i0]);
895 }
896 //2. apply left boundary conditions in first plane
897 unsigned i0=0;
898 if( m_bcz != dg::PER)
899 {
900 if( m_bcz == dg::DIR || m_bcz == dg::DIR_NEU)
901 dg::blas1::axpby( 2., m_left, -1., m_f[i0], m_ghostM);
902 if( m_bcz == dg::NEU || m_bcz == dg::NEU_DIR)
903 dg::blas1::axpby( -m_deltaPhi, m_left, 1., m_f[i0], m_ghostM);
904 //interlay ghostcells with periodic cells: L*g + (1-L)*fme
905 dg::blas1::axpby( 1., m_ghostM, -1., m_temp[i0], m_ghostM);
906 dg::blas1::pointwiseDot( 1., m_limiter, m_ghostM, 1., m_temp[i0]);
907 }
908}
909
910template<class G, class I, class container>
911template< class BinaryOp, class UnaryOp>
912container Fieldaligned<G, I,container>::evaluate( BinaryOp binary,
913 UnaryOp unary, unsigned p0, unsigned rounds) const
914{
915 //idea: simply apply I+/I- enough times on the init2d vector to get the result in each plane
916 //unary function is always such that the p0 plane is at x=0
917 assert( p0 < m_g->Nz());
918 const dg::ClonePtr<aGeometry2d> g2d = m_g->perp_grid();
919 container init2d = dg::pullback( binary, *g2d);
920 container zero2d = dg::evaluate( dg::zero, *g2d);
921
922 container temp(init2d), tempP(init2d), tempM(init2d);
923 container vec3d = dg::evaluate( dg::zero, *m_g);
924 std::vector<container> plus2d(m_Nz, zero2d), minus2d(plus2d), result(plus2d);
925 unsigned turns = rounds;
926 if( turns ==0) turns++;
927 //first apply Interpolation many times, scale and store results
928 for( unsigned r=0; r<turns; r++)
929 for( unsigned i0=0; i0<m_Nz; i0++)
930 {
931 dg::blas1::copy( init2d, tempP);
932 dg::blas1::copy( init2d, tempM);
933 unsigned rep = r*m_Nz + i0;
934 for(unsigned k=0; k<rep; k++)
935 {
937 dg::blas2::symv( m_minus, tempP, temp);
938 temp.swap( tempP);
940 dg::blas2::symv( m_plus, tempM, temp);
941 temp.swap( tempM);
942 }
943 dg::blas1::scal( tempP, unary( (double)rep*m_deltaPhi ) );
944 dg::blas1::scal( tempM, unary( -(double)rep*m_deltaPhi ) );
945 dg::blas1::axpby( 1., tempP, 1., plus2d[i0]);
946 dg::blas1::axpby( 1., tempM, 1., minus2d[i0]);
947 }
948 //now we have the plus and the minus filaments
949 if( rounds == 0) //there is a limiter
950 {
951 for( unsigned i0=0; i0<m_Nz; i0++)
952 {
953 int idx = (int)i0 - (int)p0;
954 if(idx>=0)
955 result[i0] = plus2d[idx];
956 else
957 result[i0] = minus2d[abs(idx)];
958 thrust::copy( result[i0].begin(), result[i0].end(), vec3d.begin() + i0*m_perp_size);
959 }
960 }
961 else //sum up plus2d and minus2d
962 {
963 for( unsigned i0=0; i0<m_Nz; i0++)
964 {
965 unsigned revi0 = (m_Nz - i0)%m_Nz; //reverted index
966 dg::blas1::axpby( 1., plus2d[i0], 0., result[i0]);
967 dg::blas1::axpby( 1., minus2d[revi0], 1., result[i0]);
968 }
969 dg::blas1::axpby( -1., init2d, 1., result[0]);
970 for(unsigned i0=0; i0<m_Nz; i0++)
971 {
972 int idx = ((int)i0 -(int)p0 + m_Nz)%m_Nz; //shift index
973 thrust::copy( result[idx].begin(), result[idx].end(), vec3d.begin() + i0*m_perp_size);
974 }
975 }
976 return vec3d;
977}
978
979
981
1013template<class BinaryOp, class UnaryOp>
1014thrust::host_vector<double> fieldaligned_evaluate(
1015 const aProductGeometry3d& grid,
1016 const CylindricalVectorLvl0& vec,
1017 const BinaryOp& binary,
1018 const UnaryOp& unary,
1019 unsigned p0,
1020 unsigned rounds,
1021 double eps = 1e-5)
1022{
1023 unsigned Nz = grid.Nz();
1024 const dg::ClonePtr<aGeometry2d> g2d = grid.perp_grid();
1025 // Construct for field-aligned output
1026 dg::HVec tempP = dg::evaluate( dg::zero, *g2d), tempM( tempP);
1027 std::vector<dg::HVec> plus2d(Nz, tempP), minus2d(plus2d), result(plus2d);
1028 dg::HVec vec3d = dg::evaluate( dg::zero, grid);
1029 dg::HVec init2d = dg::pullback( binary, *g2d);
1030 std::array<dg::HVec,3> yy0{
1031 dg::pullback( dg::cooX2d, *g2d),
1032 dg::pullback( dg::cooY2d, *g2d),
1033 dg::evaluate( dg::zero, *g2d)}, yy1(yy0), xx0( yy0), xx1(yy0); //s
1034 dg::geo::detail::DSFieldCylindrical3 cyl_field(vec);
1035 double deltaPhi = grid.hz();
1036 double phiM0 = 0., phiP0 = 0.;
1037 unsigned turns = rounds;
1038 if( turns == 0) turns++;
1039 for( unsigned r=0; r<turns; r++)
1040 for( unsigned i0=0; i0<Nz; i0++)
1041 {
1042 unsigned rep = r*Nz + i0;
1043 if( rep == 0)
1044 tempM = tempP = init2d;
1045 else
1046 {
1048 "Dormand-Prince-7-4-5", std::array<double,3>{0,0,0});
1050 cyl_field, dg::pid_control, dg::fast_l2norm, eps,
1051 1e-10);
1052 for( unsigned i=0; i<g2d->size(); i++)
1053 {
1054 // minus direction needs positive integration!
1055 double phiM1 = phiM0 + deltaPhi;
1056 std::array<double,3>
1057 coords0{yy0[0][i],yy0[1][i],yy0[2][i]}, coords1;
1058 odeint.integrate_in_domain( phiM0, coords0, phiM1, coords1,
1059 deltaPhi, *g2d, eps);
1060 yy1[0][i] = coords1[0], yy1[1][i] = coords1[1], yy1[2][i] =
1061 coords1[2];
1062 tempM[i] = binary( yy1[0][i], yy1[1][i]);
1063
1064 // plus direction needs negative integration!
1065 double phiP1 = phiP0 - deltaPhi;
1066 coords0 = std::array<double,3>{xx0[0][i],xx0[1][i],xx0[2][i]};
1067 odeint.integrate_in_domain( phiP0, coords0, phiP1, coords1,
1068 -deltaPhi, *g2d, eps);
1069 xx1[0][i] = coords1[0], xx1[1][i] = coords1[1], xx1[2][i] =
1070 coords1[2];
1071 tempP[i] = binary( xx1[0][i], xx1[1][i]);
1072 }
1073 std::swap( yy0, yy1);
1074 std::swap( xx0, xx1);
1075 phiM0 += deltaPhi;
1076 phiP0 -= deltaPhi;
1077 }
1078 dg::blas1::scal( tempM, unary( -(double)rep*deltaPhi ) );
1079 dg::blas1::scal( tempP, unary( (double)rep*deltaPhi ) );
1080 dg::blas1::axpby( 1., tempM, 1., minus2d[i0]);
1081 dg::blas1::axpby( 1., tempP, 1., plus2d[i0]);
1082 }
1083 //now we have the plus and the minus filaments
1084 if( rounds == 0) //there is a limiter
1085 {
1086 for( unsigned i0=0; i0<Nz; i0++)
1087 {
1088 int idx = (int)i0 - (int)p0;
1089 if(idx>=0)
1090 result[i0] = plus2d[idx];
1091 else
1092 result[i0] = minus2d[abs(idx)];
1093 thrust::copy( result[i0].begin(), result[i0].end(), vec3d.begin() +
1094 i0*g2d->size());
1095 }
1096 }
1097 else //sum up plus2d and minus2d
1098 {
1099 for( unsigned i0=0; i0<Nz; i0++)
1100 {
1101 unsigned revi0 = (Nz - i0)%Nz; //reverted index
1102 dg::blas1::axpby( 1., plus2d[i0], 0., result[i0]);
1103 dg::blas1::axpby( 1., minus2d[revi0], 1., result[i0]);
1104 }
1105 dg::blas1::axpby( -1., init2d, 1., result[0]);
1106 for(unsigned i0=0; i0<Nz; i0++)
1107 {
1108 int idx = ((int)i0 -(int)p0 + Nz)%Nz; //shift index
1109 thrust::copy( result[idx].begin(), result[idx].end(), vec3d.begin()
1110 + i0*g2d->size());
1111 }
1112 }
1113 return vec3d;
1114}
1115
1116}//namespace geo
1117}//namespace dg
#define _ping_
DG_DEVICE T zero(T x, Ts ...xs)
DG_DEVICE double cooY2d(double x, double y)
DG_DEVICE double cooX2d(double x, double y)
void copy(const ContainerTypeIn &source, ContainerTypeOut &target)
void axpby(value_type alpha, const ContainerType1 &x, value_type1 beta, ContainerType &y)
void pointwiseDot(value_type alpha, const ContainerType1 &x1, const ContainerType2 &x2, value_type1 beta, ContainerType &y)
void assign(const from_ContainerType &from, ContainerType &to, Params &&... ps)
void scal(ContainerType &x, value_type alpha)
void pointwiseDivide(value_type alpha, const ContainerType1 &x1, const ContainerType2 &x2, value_type1 beta, ContainerType &y)
void symv(MatrixType &&M, const ContainerType1 &x, ContainerType2 &y)
std::string bc2str(bc bcx)
auto weights(const Topology &g)
auto evaluate(Functor &&f, const Topology &g)
whichMatrix
Enum for the use in Fieldaligned.
Definition fieldaligned.h:16
ZERO NoLimiter
No Limiter.
Definition fieldaligned.h:34
thrust::host_vector< double > fieldaligned_evaluate(const aProductGeometry3d &grid, const CylindricalVectorLvl0 &vec, const BinaryOp &binary, const UnaryOp &unary, unsigned p0, unsigned rounds, double eps=1e-5)
Evaluate a 2d functor and transform to all planes along the fieldlines
Definition fieldaligned.h:1014
ONE FullLimiter
Full Limiter means there is a limiter everywhere.
Definition fieldaligned.h:30
@ einsPlusT
transposed plus interpolation in previous plane
Definition fieldaligned.h:18
@ zeroPlus
plus interpolation in the current plane
Definition fieldaligned.h:21
@ einsPlus
plus interpolation in next plane
Definition fieldaligned.h:17
@ zeroForw
from dg to transformed coordinates
Definition fieldaligned.h:25
@ zeroMinusT
transposed minus interpolation in the current plane
Definition fieldaligned.h:24
@ einsMinus
minus interpolation in previous plane
Definition fieldaligned.h:19
@ zeroPlusT
transposed plus interpolation in the current plane
Definition fieldaligned.h:23
@ einsMinusT
transposed minus interpolation in next plane
Definition fieldaligned.h:20
@ zeroMinus
minus interpolation in the current plane
Definition fieldaligned.h:22
Topology::host_vector forward_transform(const typename Topology::host_vector &in, const Topology &g)
real_type interpolate(dg::space sp, const host_vector &v, real_type x, const RealGrid1d< real_type > &g, dg::bc bcx=dg::NEU)
dg::MIHMatrix_t< typename MPITopology::value_type > projection(const MPITopology &g_new, const MPITopology &g_old, std::string method="dg")
dg::SparseMatrix< int, real_type, thrust::host_vector > interpolation(const RecursiveHostVector &x, const aRealTopology< real_type, Nd > &g, std::array< dg::bc, Nd > bcx, std::string method="dg")
CylindricalVectorLvl1 createBHat(const TokamakMagneticField &mag)
Contravariant components of the magnetic unit vector field and its Divergence and derivative in cylin...
Definition magnetic_field.h:934
Geometry::host_vector pullback(const Functor &f, const Geometry &g)
void pushForwardPerp(const Functor1 &vR, const Functor2 &vZ, container &vx, container &vy, const Geometry &g)
void assign3dfrom2d(const host_vector &in2d, Container &out, const Topology &grid)
dg::IHMatrix_t< real_type > inv_backproject(const aRealTopology< real_type, Nd > &g)
dg::IHMatrix_t< real_type > backproject(const aRealTopology< real_type, Nd > &g)
void split(SharedContainer &in, std::vector< View< SharedContainer > > &out, const aRealTopology3d< real_type > &grid)
ContainerType volume(const SparseTensor< ContainerType > &t)
static auto pid_control
static auto fast_l2norm
thrust::host_vector< double > HVec
double diff() const
void toc()
void tic()
aRealGeometry2d< real_type > * perp_grid() const
real_type hz() const
unsigned size() const
unsigned Nz() const
std::enable_if_t<(Md==1), bool > contains(real_type x) const
Definition fluxfunctions.h:416
This struct bundles a vector field and its divergence.
Definition fluxfunctions.h:444
const CylindricalFunctor & y() const
y-component of the vector
Definition fluxfunctions.h:472
const CylindricalFunctor & x() const
x-component of the vector
Definition fluxfunctions.h:470
const CylindricalFunctor & divvvz() const
Definition fluxfunctions.h:478
const CylindricalFunctor & z() const
z-component of the vector
Definition fluxfunctions.h:474
Create and manage interpolation matrices from fieldline integration.
Definition fieldaligned.h:271
dg::bc bcx() const
Definition fieldaligned.h:322
const container & hbp() const
Distance between the planes .
Definition fieldaligned.h:399
const container & bphi() const
bphi
Definition fieldaligned.h:419
container interpolate_from_coarse_grid(const ProductGeometry &grid_coarse, const container &coarse)
Interpolate along fieldlines from a coarse to a fine grid in phi.
Fieldaligned(const dg::geo::TokamakMagneticField &vec, const ProductGeometry &grid, dg::bc bcx=dg::NEU, dg::bc bcy=dg::NEU, Limiter limit=FullLimiter(), double eps=1e-5, unsigned mx=12, unsigned my=12, double deltaPhi=-1, std::string interpolation_method="linear-nearest", bool benchmark=true)
Construct from a magnetic field and a grid.
Definition fieldaligned.h:279
void integrate_between_coarse_grid(const ProductGeometry &grid_coarse, const container &coarse, container &out)
Integrate a 2d function on the fine grid.
const container & bbp() const
Mask plus, 1 if fieldline intersects wall in plus direction but not in minus direction,...
Definition fieldaligned.h:444
container evaluate(BinaryOp binary, UnaryOp unary, unsigned p0, unsigned rounds) const
Evaluate a 2d functor and transform to all planes along the fieldline
const container & sqrtG() const
Volume form (including weights) .
Definition fieldaligned.h:404
void operator()(enum whichMatrix which, const container &in, container &out)
Apply the interpolation to three-dimensional vectors.
const container & sqrtGm() const
Volume form on minus plane (including weights) .
Definition fieldaligned.h:409
void set_boundaries(dg::bc bcz, double left, double right)
Set boundary conditions in the limiter region.
Definition fieldaligned.h:339
std::string method() const
Return the interpolation_method string given in the constructor.
Definition fieldaligned.h:509
const container & hbm() const
Distance between the planes and the boundary .
Definition fieldaligned.h:394
void set_boundaries(dg::bc bcz, const container &global, double scal_left, double scal_right)
Set boundary conditions in the limiter region.
Definition fieldaligned.h:373
const container & bphiM() const
bphi on minus plane
Definition fieldaligned.h:424
dg::bc bcy() const
Definition fieldaligned.h:325
double deltaPhi() const
Definition fieldaligned.h:391
Fieldaligned()
do not allocate memory; no member call except construct is valid
Definition fieldaligned.h:274
void construct(Params &&...ps)
Perfect forward parameters to one of the constructors.
Definition fieldaligned.h:316
const container & bbo() const
Mask both, 1 if fieldline intersects wall in plus direction and in minus direction,...
Definition fieldaligned.h:439
const container & bbm() const
Mask minus, 1 if fieldline intersects wall in minus direction but not in plus direction,...
Definition fieldaligned.h:434
const container & sqrtGp() const
Volume form on plus plane (including weights) .
Definition fieldaligned.h:414
Fieldaligned(const dg::geo::CylindricalVectorLvl1 &vec, const ProductGeometry &grid, dg::bc bcx=dg::NEU, dg::bc bcy=dg::NEU, Limiter limit=FullLimiter(), double eps=1e-5, unsigned mx=12, unsigned my=12, double deltaPhi=-1, std::string interpolation_method="linear-nearest", bool benchmark=true)
Construct from a vector field and a grid.
const container & bphiP() const
bphi on plus plane
Definition fieldaligned.h:429
const ProductGeometry & grid() const
Grid used for construction.
Definition fieldaligned.h:448
void set_boundaries(dg::bc bcz, const container &left, const container &right)
Set boundary conditions in the limiter region.
Definition fieldaligned.h:356
A tokamak field as given by R0, Psi and Ipol plus Meta-data like shape and equilibrium.
Definition magnetic_field.h:165