Extension: Geometries
#include "dg/geometries/geometries.h"
Loading...
Searching...
No Matches
modified.h
Go to the documentation of this file.
1#pragma once
2
3#include <iostream>
4#include <cmath>
5#include <vector>
6
7#include "dg/algorithm.h"
8
9#include "magnetic_field.h"
10
11
16namespace dg
17{
18namespace geo
19{
23namespace mod
24{
25//modify with a polynomial Heaviside function
28
38struct Psip: public aCylindricalFunctor<Psip>
39{
40 Psip( std::function<bool(double,double)> predicate, std::function<double(double,double)> psip, double psi0, double alpha, double sign = -1) :
41 m_ipoly( psi0, alpha, sign), m_psip(psip), m_pred(predicate)
42 { }
43 double do_compute(double R, double Z) const
44 {
45 double psip = m_psip(R,Z);
46 if( m_pred( R,Z))
47 return m_ipoly( psip);
48 else
49 return psip;
50 }
51 private:
53 std::function<double(double,double)> m_psip;
54 std::function<bool(double,double)> m_pred;
55};
56struct PsipR: public aCylindricalFunctor<PsipR>
57{
58 PsipR( std::function<bool(double,double)> predicate, std::function<double(double,double)> psip, std::function<double(double,double)> psipR, double psi0, double alpha, double sign = -1) :
59 m_poly( psi0, alpha, sign), m_psip(psip), m_psipR(psipR), m_pred(predicate)
60 { }
61 double do_compute(double R, double Z) const
62 {
63 double psip = m_psip(R,Z);
64 double psipR = m_psipR(R,Z);
65 if( m_pred( R,Z))
66 return psipR*m_poly( psip);
67 else
68 return psipR;
69 }
70 private:
72 std::function<double(double,double)> m_psip, m_psipR;
73 std::function<bool(double,double)> m_pred;
74};
75struct PsipZ: public aCylindricalFunctor<PsipZ>
76{
77 PsipZ( std::function<bool(double,double)> predicate, std::function<double(double,double)> psip, std::function<double(double,double)> psipZ, double psi0, double alpha, double sign = -1) :
78 m_poly( psi0, alpha, sign), m_psip(psip), m_psipZ(psipZ), m_pred(predicate)
79 { }
80 double do_compute(double R, double Z) const
81 {
82 double psip = m_psip(R,Z);
83 double psipZ = m_psipZ(R,Z);
84 if( m_pred( R,Z))
85 return psipZ*m_poly( psip);
86 else
87 return psipZ;
88 }
89 private:
91 std::function<double(double,double)> m_psip, m_psipZ;
92 std::function<bool(double,double)> m_pred;
93};
94
95struct PsipZZ: public aCylindricalFunctor<PsipZZ>
96{
97 PsipZZ( std::function<bool(double,double)> predicate, std::function<double(double,double)> psip, std::function<double(double,double)> psipZ, std::function<double(double,double)> psipZZ, double psi0, double alpha, double sign = -1) :
98 m_poly( psi0, alpha, sign), m_dpoly( psi0, alpha, sign), m_psip(psip), m_psipZ(psipZ), m_psipZZ(psipZZ), m_pred(predicate)
99 { }
100 double do_compute(double R, double Z) const
101 {
102 double psip = m_psip(R,Z);
103 double psipZ = m_psipZ(R,Z);
104 double psipZZ = m_psipZZ(R,Z);
105 if( m_pred( R,Z))
106 return psipZZ*m_poly( psip) + psipZ*psipZ*m_dpoly(psip);
107 else
108 return psipZZ;
109 }
110 private:
113 std::function<double(double,double)> m_psip, m_psipZ, m_psipZZ;
114 std::function<bool(double,double)> m_pred;
115};
116
117struct PsipRR: public aCylindricalFunctor<PsipRR>
118{
119 PsipRR( std::function<bool(double,double)> predicate, std::function<double(double,double)> psip, std::function<double(double,double)> psipR, std::function<double(double,double)> psipRR, double psi0, double alpha, double sign = -1) :
120 m_poly( psi0, alpha, sign), m_dpoly( psi0, alpha, sign), m_psip(psip), m_psipR(psipR), m_psipRR(psipRR), m_pred(predicate)
121 { }
122 double do_compute(double R, double Z) const
123 {
124 double psip = m_psip(R,Z);
125 double psipR = m_psipR(R,Z);
126 double psipRR = m_psipRR(R,Z);
127 if( m_pred( R,Z))
128 return psipRR*m_poly( psip) + psipR*psipR*m_dpoly(psip);
129 else
130 return psipRR;
131 }
132 private:
135 std::function<double(double,double)> m_psip, m_psipR, m_psipRR;
136 std::function<bool(double,double)> m_pred;
137};
138struct PsipRZ: public aCylindricalFunctor<PsipRZ>
139{
140 PsipRZ( std::function<bool(double,double)> predicate, std::function<double(double,double)> psip, std::function<double(double,double)> psipR, std::function<double(double,double)> psipZ, std::function<double(double,double)> psipRZ, double psi0, double alpha, double sign = -1) :
141 m_poly( psi0, alpha, sign), m_dpoly( psi0, alpha, sign), m_psip(psip), m_psipR(psipR), m_psipZ(psipZ), m_psipRZ(psipRZ), m_pred(predicate)
142 { }
143 double do_compute(double R, double Z) const
144 {
145 double psip = m_psip(R,Z);
146 double psipR = m_psipR(R,Z);
147 double psipZ = m_psipZ(R,Z);
148 double psipRZ = m_psipRZ(R,Z);
149 if( m_pred( R,Z))
150 return psipRZ*m_poly( psip) + psipR*psipZ*m_dpoly(psip);
151 else
152 return psipRZ;
153 }
154 private:
157 std::function<double(double,double)> m_psip, m_psipR, m_psipZ, m_psipRZ;
158 std::function<bool(double,double)> m_pred;
159};
160
161
176 const std::function<bool(double,double)> predicate,
177 const CylindricalFunctorsLvl2& psip,
178 double psi0, double alpha, double sign = -1)
179{
181 mod::Psip(predicate,psip.f(), psi0, alpha, sign),
182 mod::PsipR(predicate,psip.f(), psip.dfx(), psi0, alpha, sign),
183 mod::PsipZ(predicate,psip.f(), psip.dfy(), psi0, alpha, sign),
184 mod::PsipRR(predicate,psip.f(), psip.dfx(), psip.dfxx(), psi0, alpha, sign),
185 mod::PsipRZ(predicate,psip.f(), psip.dfx(), psip.dfy(), psip.dfxy(), psi0, alpha, sign),
186 mod::PsipZZ(predicate,psip.f(), psip.dfy(), psip.dfyy(), psi0, alpha, sign));
187}
188
191struct DampingRegion : public aCylindricalFunctor<DampingRegion>
192{
193 DampingRegion( std::function<bool(double,double)> predicate, std::function<double(double,double)> psip, double psi0, double alpha, double sign = -1) :
194 m_poly( psi0, alpha, sign), m_psip(psip), m_pred(predicate)
195 { }
196 double do_compute(double R, double Z) const
197 {
198 if( m_pred( R,Z))
199 return m_poly( m_psip(R,Z));
200 else
201 return 0;
202 }
203 private:
205 std::function<double(double,double)> m_psip;
206 std::function<bool(double,double)> m_pred;
207};
208struct MagneticTransition : public aCylindricalFunctor<MagneticTransition>
209{
210 MagneticTransition( std::function<bool(double,double)> predicate, std::function<double(double,double)> psip, double psi0, double alpha, double sign = -1) :
211 m_dpoly( psi0, alpha, sign), m_psip(psip), m_pred(predicate)
212 { }
213 double do_compute(double R, double Z) const
214 {
215 double psip = m_psip(R,Z);
216 if( m_pred( R,Z))
217 return m_dpoly( psip);
218 else
219 return 0;
220 }
221 private:
223 std::function<double(double,double)> m_psip;
224 std::function<bool(double,double)> m_pred;
225};
226//some possible predicates
227inline constexpr bool nowhere( double R, double Z){return false;}
228inline constexpr bool everywhere( double R, double Z){return true;}
229// positive above certain Z value ( deprecated in favor of Above)
230struct HeavisideZ
231{
232 HeavisideZ( double Z_X, int side): m_ZX( Z_X), m_side(side) {}
233 bool operator()(double R, double Z)const{
234 if( Z < m_ZX && m_side <= 0) return true;
235 if( Z >= m_ZX && m_side > 0) return true;
236 return false;
237 }
238 private:
239 double m_ZX;
240 int m_side;
241};
242
245struct RightSideOf
246{
247 RightSideOf( std::array<double,2> p1, std::array<double,2> p2)
248 : RightSideOf( std::vector{p1,p2})
249 {
250 }
251 RightSideOf( std::array<double,2> p1, std::array<double,2> p2,
252 std::array<double,2> p3) : RightSideOf( std::vector{p1,p2,p3})
253 {
254 }
255 RightSideOf( std::vector<std::array<double,2>> ps): m_ps(ps)
256 {
257 if( ps.size() != 2 and ps.size() != 3)
258 throw Error( Message(_ping_) << "Give either 2 or 3 Points");
259 for( unsigned u=0; u<ps.size(); u++)
260 for( unsigned k=0; k<ps.size(); k++)
261 if( u!=k and ps[u][0] == ps[k][0] and ps[u][1] == ps[k][1])
262 throw Error( Message(_ping_) << "Points " <<k <<" and "<<u<<" must be different!");
263 }
264 bool operator() ( double R, double Z) const
265 {
266 // I'm sure it is possible to generalize this to more than three points
267 // but it hurts my head right now
268 std::array<double,2> x = {R,Z};
269 std::vector<bool> right_of( m_ps.size()-1);
270 // For each consecutive pair of points check if x lies on the right
271 for( unsigned u=0; u<m_ps.size()-1; u++)
272 {
273 right_of[u] = right_handed( m_ps[u], x, m_ps[u+1]);
274 }
275 if( m_ps.size() == 2)
276 return right_of[0];
277 // else we have 3 points
278 if ( right_handed( m_ps[0], m_ps[2], m_ps[1]))
279 {
280 if( right_of[0] and right_of[1]) // it is right of both lines
281 return true;
282 else
283 return false;
284 }
285 else // left handed points
286 {
287 if( not right_of[0] and not right_of[1]) // it is left of both lines
288 return false;
289 else
290 return true;
291 }
292 }
293 private:
294 // is true if p0,p1,p2 forms a right handed triangle i.e. go counter-clockwise
295 // which is equivalent to saying that p1 is right of [p0,p2]
296 bool right_handed( const std::array<double,2>& p0,
297 const std::array<double,2>& p1,
298 const std::array<double,2>& p2) const
299 {
300 //std::cout<< "p0 "<<p0[0]<<" "<<p0[1]<<" p1 "<<p1[0]<<" "<<p1[1]<<" p2 "<<p2[0]<<" "<<p2[1]<<"\n";
301 // if v1 x v2 points up the system is right handed
302 std::array<double,2> v1 = { p1[0]- p0[0], p1[1] - p0[1]};
303 std::array<double,2> v2 = { p2[0]- p0[0], p2[1] - p0[1]};
304 // Now check if z-component of cross product points up or down
305 double v3z = v1[0]*v2[1] - v1[1]*v2[0];
306 //std::cout<< "v3z "<<v3z<<"\n";
307 return (v3z >= 0);
308 }
309 std::vector<std::array<double,2>> m_ps;
310};
311
312// Check if a point lies above or below a plane given by origin p0 and its normal vector (p1-p0)
313struct Above
314{
315 // normal vector is defined by n = p1 - p0
316 // if above is false the predicate returns false for points above the plane
317 Above( std::array<double,2> p0, std::array<double,2> p1, bool above = true)
318 : m_p0( p0), m_vec{ p1[0]-p0[0], p1[1]-p0[1]}, m_above(above){}
319 bool operator() (double R, double Z) const
320 {
321 R -= m_p0[0];
322 Z -= m_p0[1];
323 double res = m_vec[0]* R + m_vec[1]*Z;
324 return m_above == (res > 0); // true if both above and res > 0 or below and res <= 0
325 }
326 private:
327 std::array<double,2> m_p0, m_vec;
328 bool m_above;
329};
330
332
347{
353 ClosedFieldlineRegion( const TokamakMagneticField& mag, bool closed = true):
354 m_psip(mag.psip()), m_closed(closed)
355 {
356 double RO = mag.R0(), ZO= 0.;
357 description desc = mag.params().getDescription();
358 if( desc == description::none or desc == description::centeredX)
359 {
360 // w/o O-point there is no closed Fieldline region
361 m_opoint = false;
362 }
363 else
364 {
365 m_opoint = true;
366 dg::geo::findOpoint( mag.get_psip(), RO, ZO);
367 double psipO = mag.psip()( RO, ZO);
368 m_psipO_pos = psipO > 0;
369 double RX1 = 0., ZX1 = 0., RX2 = 0., ZX2 = 0.;
370 description desc = mag.params().getDescription();
371 dg::geo::findOpoint( mag.get_psip(), RO, ZO);
372 if ( desc == description::standardX or desc == description::doubleX)
373 {
374 // Find first X-point
375 RX1 = mag.R0()-1.1*mag.params().triangularity()*mag.params().a();
376 ZX1 = -1.1*mag.params().elongation()*mag.params().a();
377 dg::geo::findXpoint( mag.get_psip(), RX1, ZX1);
378 m_above.push_back( mod::Above( {RX1, ZX1}, {RO, ZO}));
379 }
380 if ( desc == description::doubleX)
381 {
382 // Find second X-point
383 RX2 = mag.R0()-1.1*mag.params().triangularity()*mag.params().a();
384 ZX2 = +1.1*mag.params().elongation()*mag.params().a();
385 dg::geo::findXpoint( mag.get_psip(), RX2, ZX2);
386 m_above.push_back( mod::Above( {RX2, ZX2}, {RO, ZO}));
387 }
388 }
389 }
390
396 bool operator()( double R, double Z) const
397 {
398 if( not m_opoint)
399 return not m_closed;
400 for( unsigned u=0; u<m_above.size(); u++)
401 if( not m_above[u](R,Z))
402 return not m_closed;
403
404 double psip = m_psip(R,Z);
405 if( m_psipO_pos == (psip > 0) ) // psip has same sign as O-point
406 return m_closed;
407 return not m_closed;
408 }
409 private:
410 bool m_opoint;
411 bool m_psipO_pos;
412 std::vector<dg::geo::mod::Above> m_above;
413 CylindricalFunctor m_psip;
414 bool m_closed;
415};
416
425{
431 SOLRegion( const TokamakMagneticField& mag, CylindricalFunctor wall): m_wall(wall),
432 m_closed(mag){}
438 bool operator()( double R, double Z)
439 {
440 return m_wall(R,Z) != 1 and not m_closed(R,Z);
441 }
442 private:
443 CylindricalFunctor m_wall;
444 ClosedFieldlineRegion m_closed;
445};
446
447
450
456struct SetCompose : public aCylindricalFunctor<SetCompose>
457{
458 SetCompose( std::function<double(double,double)> fct_mod,
459 std::function<double(double,double)> fct1,
460 std::function<double(double,double)> fct2) :
461 m_fct1(fct1), m_fct2(fct2), m_fct_mod( fct_mod)
462 { }
463 double do_compute(double R, double Z) const
464 {
465 return m_fct_mod( m_fct1(R,Z), m_fct2(R,Z));
466 }
467 private:
468 std::function<double(double,double)> m_fct1, m_fct2, m_fct_mod;
469};
476struct SetUnion : public aCylindricalFunctor<SetUnion>
477{
478 SetUnion( std::function<double(double,double)> fct1,
479 std::function<double(double,double)> fct2) :
480 m_fct1(fct1), m_fct2(fct2)
481 { }
482 double do_compute(double R, double Z) const
483 {
484 double f1 = m_fct1(R,Z), f2 = m_fct2( R,Z);
485 return f1 + f2 - f1*f2;
486 }
487 private:
488 std::function<double(double,double)> m_fct1, m_fct2;
489};
496struct SetIntersection : public aCylindricalFunctor<SetIntersection>
497{
498 SetIntersection( std::function<double(double,double)> fct1,
499 std::function<double(double,double)> fct2) :
500 m_fct1(fct1), m_fct2(fct2)
501 { }
502 double do_compute(double R, double Z) const
503 {
504 double f1 = m_fct1(R,Z), f2 = m_fct2( R,Z);
505 return f1*f2;
506 }
507 private:
508 std::function<double(double,double)> m_fct1, m_fct2;
509};
516struct SetNot : public aCylindricalFunctor<SetNot>
517{
518 SetNot( std::function<double(double,double)> fct) :
519 m_fct(fct)
520 { }
521 double do_compute(double R, double Z) const
522 {
523 return 1-m_fct(R,Z);
524 }
525 private:
526 std::function<double(double,double)> m_fct;
527};
528
530
531} //namespace mod
532
533} //namespace geo
534} //namespace dg
description
How flux function looks like. Decider on whether and what flux aligned grid to construct.
Definition magnetic_field.h:50
@ none
no shaping: Purely toroidal magnetic field
@ doubleX
closed flux surfaces centered around an O-point located near (R_0, 0) and bordered by a separatrix wi...
@ centeredX
one X-point in the middle, no O-point, only open flux surfaces, X-grids cannot be constructed
@ standardX
closed flux surfaces centered around an O-point located near (R_0, 0) and bordered by a separatrix wi...
void findXpoint(const CylindricalFunctorsLvl2 &psi, double &RC, double &ZC)
This function finds X-points of psi.
Definition fluxfunctions.h:354
int findOpoint(const CylindricalFunctorsLvl2 &psi, double &RC, double &ZC)
This function finds O-points of psi.
Definition fluxfunctions.h:336
dg::geo::CylindricalFunctorsLvl2 createPsip(const std::function< bool(double, double)> predicate, const CylindricalFunctorsLvl2 &psip, double psi0, double alpha, double sign=-1)
Definition modified.h:175
This struct bundles a function and its first and second derivatives.
Definition fluxfunctions.h:223
const CylindricalFunctor & dfxy() const
Definition fluxfunctions.h:255
const CylindricalFunctor & dfy() const
Definition fluxfunctions.h:251
const CylindricalFunctor & dfx() const
Definition fluxfunctions.h:249
const CylindricalFunctor & dfxx() const
Definition fluxfunctions.h:253
const CylindricalFunctor & f() const
Definition fluxfunctions.h:247
const CylindricalFunctor & dfyy() const
Definition fluxfunctions.h:257
double a() const
The minor radius.
Definition magnetic_field.h:125
description getDescription() const
how the flux function looks
Definition magnetic_field.h:143
double elongation() const
Definition magnetic_field.h:131
double triangularity() const
Definition magnetic_field.h:137
A tokamak field as given by R0, Psi and Ipol plus Meta-data like shape and equilibrium.
Definition magnetic_field.h:165
const CylindricalFunctorsLvl2 & get_psip() const
Definition magnetic_field.h:200
const MagneticFieldParameters & params() const
Access Meta-data of the field.
Definition magnetic_field.h:207
double R0() const
Definition magnetic_field.h:180
const CylindricalFunctor & psip() const
, where R, Z are cylindrical coordinates
Definition magnetic_field.h:182
Represent functions written in cylindrical coordinates that are independent of the angle phi serving ...
Definition fluxfunctions.h:66
Predicate identifying closed fieldline region.
Definition modified.h:347
bool operator()(double R, double Z) const
Return closed in closed fieldline region.
Definition modified.h:396
ClosedFieldlineRegion(const TokamakMagneticField &mag, bool closed=true)
Construct from magnetic field.
Definition modified.h:353
Definition modified.h:39
double do_compute(double R, double Z) const
Definition modified.h:43
Psip(std::function< bool(double, double)> predicate, std::function< double(double, double)> psip, double psi0, double alpha, double sign=-1)
Definition modified.h:40
Definition modified.h:57
PsipR(std::function< bool(double, double)> predicate, std::function< double(double, double)> psip, std::function< double(double, double)> psipR, double psi0, double alpha, double sign=-1)
Definition modified.h:58
double do_compute(double R, double Z) const
Definition modified.h:61
Definition modified.h:118
PsipRR(std::function< bool(double, double)> predicate, std::function< double(double, double)> psip, std::function< double(double, double)> psipR, std::function< double(double, double)> psipRR, double psi0, double alpha, double sign=-1)
Definition modified.h:119
double do_compute(double R, double Z) const
Definition modified.h:122
Definition modified.h:139
double do_compute(double R, double Z) const
Definition modified.h:143
PsipRZ(std::function< bool(double, double)> predicate, std::function< double(double, double)> psip, std::function< double(double, double)> psipR, std::function< double(double, double)> psipZ, std::function< double(double, double)> psipRZ, double psi0, double alpha, double sign=-1)
Definition modified.h:140
Definition modified.h:76
PsipZ(std::function< bool(double, double)> predicate, std::function< double(double, double)> psip, std::function< double(double, double)> psipZ, double psi0, double alpha, double sign=-1)
Definition modified.h:77
double do_compute(double R, double Z) const
Definition modified.h:80
Definition modified.h:96
double do_compute(double R, double Z) const
Definition modified.h:100
PsipZZ(std::function< bool(double, double)> predicate, std::function< double(double, double)> psip, std::function< double(double, double)> psipZ, std::function< double(double, double)> psipZZ, double psi0, double alpha, double sign=-1)
Definition modified.h:97
The default predicate for sheath integration.
Definition modified.h:425
SOLRegion(const TokamakMagneticField &mag, CylindricalFunctor wall)
Construct from magnetic field and wall functor.
Definition modified.h:431
bool operator()(double R, double Z)
Return true in SOL region.
Definition modified.h:438
Definition modified.h:457
SetCompose(std::function< double(double, double)> fct_mod, std::function< double(double, double)> fct1, std::function< double(double, double)> fct2)
Definition modified.h:458
double do_compute(double R, double Z) const
Definition modified.h:463
Definition modified.h:497
SetIntersection(std::function< double(double, double)> fct1, std::function< double(double, double)> fct2)
Definition modified.h:498
double do_compute(double R, double Z) const
Definition modified.h:502
Definition modified.h:517
double do_compute(double R, double Z) const
Definition modified.h:521
SetNot(std::function< double(double, double)> fct)
Definition modified.h:518
Definition modified.h:477
double do_compute(double R, double Z) const
Definition modified.h:482
SetUnion(std::function< double(double, double)> fct1, std::function< double(double, double)> fct2)
Definition modified.h:478