Discontinuous Galerkin Library
#include "dg/algorithm.h"
Loading...
Searching...
No Matches
derivativesX.h
Go to the documentation of this file.
1#pragma once
2
3#include "gridX.h"
4#include "dxX.h"
5#include "../blas.h"
6
10namespace dg{
11
12template<class Matrix>
14{
15 Composite( ):m1(), m2(), dual(false){ }
16 template<class Matrix2>
17 Composite( const Composite<Matrix2>& src):m1(src.m1), m2(src.m2), dual(src.dual){}
18 Composite( const Matrix& m):m1(m), m2(m), dual(false){ }
19 Composite( const Matrix& m1, const Matrix& m2):m1(m1), m2(m2), dual(true){ }
20 template<class Matrix2>
22 *this = c; return *this;}
23 template< class ContainerType1, class ContainerType2>
24 void symv( const ContainerType1& v1, ContainerType2& v2) const
25 {
26 dg::blas2::symv( m1, v1, v2); //computes first part
27 if( dual)
28 dg::blas2::symv( m2, v1, v2); //computes second part
29 }
30 template< class ContainerType>
31 void symv( get_value_type<ContainerType> alpha, const ContainerType& v1, get_value_type<ContainerType> beta, ContainerType& v2) const
32 {
33 dg::blas2::symv( alpha, m1, v1, beta, v2); //computes first part
34 if( dual)
35 dg::blas2::symv( alpha, m2, v1, beta, v2); //computes second part
36 }
37 void display( std::ostream& os = std::cout) const
38 {
39 if( dual)
40 {
41 os << " dual matrix: \n";
42 os << " INNER MATRIX\n";
43 m1.display( os);
44 os << " OUTER MATRIX\n";
45 m2.display( os);
46 }
47 else
48 {
49 os << "single matrix: \n";
50 m1.display(os);
51 }
52 }
53 Matrix m1, m2;
54 bool dual;
55};
57template <class Matrix>
58struct TensorTraits<Composite<Matrix> >
59{
62};
64
65
69namespace create{
70
73
74//dx, dy, jumpX, jumpY
75
86template<class real_type>
88{
89 if( coord == 0)
90 {
92 dx = dx_normed( g.n(), g.Nx(), g.hx(), bc, dir);
93 dx.set_left_size( g.n()*g.Ny());
94 return dx;
95 }
97 RealGridX1d<real_type> g1d_inner( g.y0(), g.y1(), g.fy(), g.n(), g.Ny(), bc);
98 dy_inner = dx( g1d_inner, bc, dir);
99 dy_outer = dx_normed( g.n(), g.Ny(), g.hy(), bc, dir );
100 dy_inner.right_size = g.n()*g.Nx();
101 dy_inner.right_range[0] = 0;
102 dy_inner.right_range[1] = g.n()*g.inner_Nx();
103 dy_outer.right_range[0] = g.n()*g.inner_Nx();
104 dy_outer.right_range[1] = g.n()*g.Nx();
105 dy_outer.right_size = g.n()*g.Nx();
106
108 return c;
109 // TODO throw on coord > 1 ?
110}
111
121template<class real_type>
123{
124 if( coord == 0)
125 {
127 jx = jump( g.n(), g.Nx(), g.hx(), bc);
128 jx.set_left_size( g.n()*g.Ny());
129 return jx;
130 }
132 RealGridX1d<real_type> g1d_inner( g.y0(), g.y1(), g.fy(), g.n(), g.Ny(), bc);
133 jy_inner = jump( g1d_inner, bc);
134 jy_outer = jump( g.n(), g.Ny(), g.hy(), bc);
135 jy_inner.right_size = g.n()*g.Nx();
136 jy_inner.right_range[0] = 0;
137 jy_inner.right_range[1] = g.n()*g.inner_Nx();
138 jy_outer.right_range[0] = g.n()*g.inner_Nx();
139 jy_outer.right_range[1] = g.n()*g.Nx();
140 jy_outer.right_size = g.n()*g.Nx();
141
143 return c;
144 // TODO throw on coord > 1 ?
145}
146
148
157template<class real_type>
159{
160 if( coord == 0)
161 {
163 jx = jump( g.n(), g.Nx(), g.hx(), bc);
164 jx.set_left_size( g.n()*g.Ny()*g.Nz());
165 return jx;
166 }
167 else if ( coord == 1)
168 {
170 RealGridX1d<real_type> g1d_inner( g.y0(), g.y1(), g.fy(), g.n(), g.Ny(), bc);
171 jy_inner = jump( g1d_inner, bc);
172 jy_outer = jump( g.n(), g.Ny(), g.hy(), bc);
173 jy_inner.right_size = g.n()*g.Nx();
174 jy_inner.right_range[0] = 0;
175 jy_inner.right_range[1] = g.n()*g.inner_Nx();
176 jy_outer.right_range[0] = g.n()*g.inner_Nx();
177 jy_outer.right_range[1] = g.n()*g.Nx();
178 jy_outer.right_size = g.n()*g.Nx();
179 jy_inner.left_size = g.Nz();
180 jy_outer.left_size = g.Nz();
181
183 return c;
184 }
186 jz = jump( 1, g.Nz(), g.hz(), bc);
187 jz.set_right_size( g.n()*g.Nx()*g.n()*g.Ny());
188 return jz;
189 // TODO throw on coord > 2 ?
190}
191
192
203template<class real_type>
205{
206 if( coord == 0)
207 {
209 dx = dx_normed( g.n(), g.Nx(), g.hx(), bc, dir);
210 dx.set_left_size( g.n()*g.Ny()*g.Nz());
211 return dx;
212 }
213 else if( coord == 1)
214 {
216 RealGridX1d<real_type> g1d_inner( g.y0(), g.y1(), g.fy(), g.n(), g.Ny(), bc);
217 dy_inner = dx( g1d_inner, bc, dir);
218 dy_outer = dx_normed( g.n(), g.Ny(), g.hy(), bc, dir );
219 dy_inner.right_size = g.n()*g.Nx();
220 dy_inner.right_range[0] = 0;
221 dy_inner.right_range[1] = g.n()*g.inner_Nx();
222 dy_outer.right_range[0] = g.n()*g.inner_Nx();
223 dy_outer.right_range[1] = g.n()*g.Nx();
224 dy_outer.right_size = g.n()*g.Nx();
225 dy_inner.left_size = g.Nz();
226 dy_outer.left_size = g.Nz();
227
229 return c;
230 }
232 dz = dx_normed( 1, g.Nz(), g.hz(), bc, dir);
233 dz.set_right_size( g.n()*g.n()*g.Nx()*g.Ny());
234 return dz;
235 // TODO throw on coord > 2 ?
236}
237
238
239
241
242} //namespace create
243
244} //namespace dg
245
Simple 1d derivatives on X-point topology.
base X-point topology classes
void symv(MatrixType &&M, const ContainerType1 &x, ContainerType2 &y)
Definition blas2.h:325
auto dx(const Topology &g, dg::bc bc, dg::direction dir=centered)
Definition derivativesT.h:14
EllSparseBlockMat< real_type, thrust::host_vector > jump(unsigned coord, const aRealTopology< real_type, Nd > &g, dg::bc bc)
Create a jump matrix along given coordinate.
Definition derivatives.h:70
EllSparseBlockMat< real_type, thrust::host_vector > derivative(unsigned coord, const aRealTopology< real_type, Nd > &g, dg::bc bc, direction dir=centered)
Create a derivative along given coordinate.
Definition derivatives.h:49
bc
Switch between boundary conditions.
Definition enums.h:15
direction
Direction of a discrete derivative.
Definition enums.h:97
auto dz(const Topology &g, dg::bc bc, dg::direction dir=centered)
Short for dg::create::derivative( 2, g, bc, dir);
Definition derivativesT.h:28
@ centered
centered derivative (cell to the left and right and current cell)
Definition enums.h:100
typename TensorTraits< std::decay_t< Vector > >::value_type get_value_type
Definition tensor_traits.h:45
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
Definition derivativesX.h:14
Composite & operator=(const Composite< Matrix2 > &src)
Definition derivativesX.h:21
bool dual
Definition derivativesX.h:54
void symv(get_value_type< ContainerType > alpha, const ContainerType &v1, get_value_type< ContainerType > beta, ContainerType &v2) const
Definition derivativesX.h:31
Matrix m1
Definition derivativesX.h:53
Composite(const Matrix &m1, const Matrix &m2)
Definition derivativesX.h:19
Composite(const Composite< Matrix2 > &src)
Definition derivativesX.h:17
Composite()
Definition derivativesX.h:15
void symv(const ContainerType1 &v1, ContainerType2 &v2) const
Definition derivativesX.h:24
Matrix m2
Definition derivativesX.h:53
void display(std::ostream &os=std::cout) const
Definition derivativesX.h:37
Composite(const Matrix &m)
Definition derivativesX.h:18
Ell Sparse Block Matrix format.
Definition sparseblockmat.h:46
int right_size
size of the right Kronecker delta (is e.g 1 for a x - derivative)
Definition sparseblockmat.h:177
void set_left_size(int new_left_size)
Set left_size = new_left_size;
Definition sparseblockmat.h:157
void set_right_size(int new_right_size)
Set right_size = new_right_size; set_default_range();
Definition sparseblockmat.h:152
Vector< int > right_range
range (can be used to apply the matrix to only part of the right rows
Definition sparseblockmat.h:171
int left_size
size of the left Kronecker delta
Definition sparseblockmat.h:176
1D grid for X-point topology
Definition gridX.h:68
Indicates that the type has a member function with the same name and interface (up to the matrix itse...
Definition matrix_categories.h:26
The vector traits.
Definition tensor_traits.h:38
NotATensorTag tensor_category
Definition tensor_traits.h:40
void value_type
Definition tensor_traits.h:39
A 2D grid class with X-point topology.
Definition gridX.h:257
real_type hx() const
cell size in x
Definition gridX.h:310
real_type y0() const
left boundary in y
Definition gridX.h:286
real_type y1() const
Right boundary in y.
Definition gridX.h:292
unsigned Nx() const
number of cells in x
Definition gridX.h:340
unsigned inner_Nx() const
number of topological cells in x
Definition gridX.h:346
unsigned Ny() const
number of cells in y
Definition gridX.h:358
real_type fy() const
partition factor in y
Definition gridX.h:328
real_type hy() const
cell size in y
Definition gridX.h:316
unsigned n() const
number of polynomial coefficients in x and y
Definition gridX.h:334
A 3D grid class with X-point topology.
Definition gridX.h:541
unsigned n() const
number of polynomial coefficients in x and y
Definition gridX.h:645
real_type y1() const
right boundary in y
Definition gridX.h:576
real_type hx() const
cell size in x
Definition gridX.h:615
unsigned Nz() const
number of points in z
Definition gridX.h:687
real_type hy() const
cell size in y
Definition gridX.h:621
unsigned Ny() const
number of cells in y
Definition gridX.h:669
real_type hz() const
cell size in z
Definition gridX.h:627
unsigned Nx() const
number of points in x
Definition gridX.h:651
real_type y0() const
left boundary in y
Definition gridX.h:570
unsigned inner_Nx() const
number of topological cells in x
Definition gridX.h:657
real_type fy() const
partition factor in y
Definition gridX.h:639