16 template<
class Matrix2>
20 template<
class Matrix2>
22 *
this = c;
return *
this;}
23 template<
class ContainerType1,
class ContainerType2>
24 void symv(
const ContainerType1& v1, ContainerType2& v2)
const
30 template<
class ContainerType>
37 void display( std::ostream& os = std::cout)
const
41 os <<
" dual matrix: \n";
42 os <<
" INNER MATRIX\n";
44 os <<
" OUTER MATRIX\n";
49 os <<
"single matrix: \n";
57template <
class Matrix>
86template<
class real_type>
92 dx = dx_normed( g.
n(), g.
Nx(), g.
hx(),
bc, dir);
93 dx.set_left_size( g.
n()*g.
Ny());
98 dy_inner =
dx( g1d_inner,
bc, dir);
99 dy_outer = dx_normed( g.
n(), g.
Ny(), g.
hy(),
bc, dir );
121template<
class real_type>
133 jy_inner =
jump( g1d_inner,
bc);
157template<
class real_type>
167 else if ( coord == 1)
171 jy_inner =
jump( g1d_inner,
bc);
203template<
class real_type>
209 dx = dx_normed( g.
n(), g.
Nx(), g.
hx(),
bc, dir);
210 dx.set_left_size( g.
n()*g.
Ny()*g.
Nz());
217 dy_inner =
dx( g1d_inner,
bc, dir);
218 dy_outer = dx_normed( g.
n(), g.
Ny(), g.
hy(),
bc, dir );
232 dz = dx_normed( 1, g.
Nz(), g.
hz(),
bc, dir);
233 dz.set_right_size( g.
n()*g.
n()*g.
Nx()*g.
Ny());
Simple 1d derivatives on X-point topology.
base X-point topology classes
void symv(MatrixType &&M, const ContainerType1 &x, ContainerType2 &y)
Definition blas2.h:325
auto dx(const Topology &g, dg::bc bc, dg::direction dir=centered)
Definition derivativesT.h:14
EllSparseBlockMat< real_type, thrust::host_vector > jump(unsigned coord, const aRealTopology< real_type, Nd > &g, dg::bc bc)
Create a jump matrix along given coordinate.
Definition derivatives.h:70
EllSparseBlockMat< real_type, thrust::host_vector > derivative(unsigned coord, const aRealTopology< real_type, Nd > &g, dg::bc bc, direction dir=centered)
Create a derivative along given coordinate.
Definition derivatives.h:49
bc
Switch between boundary conditions.
Definition enums.h:15
direction
Direction of a discrete derivative.
Definition enums.h:97
auto dz(const Topology &g, dg::bc bc, dg::direction dir=centered)
Short for dg::create::derivative( 2, g, bc, dir);
Definition derivativesT.h:28
@ centered
centered derivative (cell to the left and right and current cell)
Definition enums.h:100
typename TensorTraits< std::decay_t< Vector > >::value_type get_value_type
Definition tensor_traits.h:45
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
Definition derivativesX.h:14
Composite & operator=(const Composite< Matrix2 > &src)
Definition derivativesX.h:21
bool dual
Definition derivativesX.h:54
void symv(get_value_type< ContainerType > alpha, const ContainerType &v1, get_value_type< ContainerType > beta, ContainerType &v2) const
Definition derivativesX.h:31
Matrix m1
Definition derivativesX.h:53
Composite(const Matrix &m1, const Matrix &m2)
Definition derivativesX.h:19
Composite(const Composite< Matrix2 > &src)
Definition derivativesX.h:17
Composite()
Definition derivativesX.h:15
void symv(const ContainerType1 &v1, ContainerType2 &v2) const
Definition derivativesX.h:24
Matrix m2
Definition derivativesX.h:53
void display(std::ostream &os=std::cout) const
Definition derivativesX.h:37
Composite(const Matrix &m)
Definition derivativesX.h:18
Ell Sparse Block Matrix format.
Definition sparseblockmat.h:46
int right_size
size of the right Kronecker delta (is e.g 1 for a x - derivative)
Definition sparseblockmat.h:177
void set_left_size(int new_left_size)
Set left_size = new_left_size;
Definition sparseblockmat.h:157
void set_right_size(int new_right_size)
Set right_size = new_right_size; set_default_range();
Definition sparseblockmat.h:152
Vector< int > right_range
range (can be used to apply the matrix to only part of the right rows
Definition sparseblockmat.h:171
int left_size
size of the left Kronecker delta
Definition sparseblockmat.h:176
1D grid for X-point topology
Definition gridX.h:68
Indicates that the type has a member function with the same name and interface (up to the matrix itse...
Definition matrix_categories.h:26
The vector traits.
Definition tensor_traits.h:38
NotATensorTag tensor_category
Definition tensor_traits.h:40
void value_type
Definition tensor_traits.h:39
A 2D grid class with X-point topology.
Definition gridX.h:257
real_type hx() const
cell size in x
Definition gridX.h:310
real_type y0() const
left boundary in y
Definition gridX.h:286
real_type y1() const
Right boundary in y.
Definition gridX.h:292
unsigned Nx() const
number of cells in x
Definition gridX.h:340
unsigned inner_Nx() const
number of topological cells in x
Definition gridX.h:346
unsigned Ny() const
number of cells in y
Definition gridX.h:358
real_type fy() const
partition factor in y
Definition gridX.h:328
real_type hy() const
cell size in y
Definition gridX.h:316
unsigned n() const
number of polynomial coefficients in x and y
Definition gridX.h:334
A 3D grid class with X-point topology.
Definition gridX.h:541
unsigned n() const
number of polynomial coefficients in x and y
Definition gridX.h:645
real_type y1() const
right boundary in y
Definition gridX.h:576
real_type hx() const
cell size in x
Definition gridX.h:615
unsigned Nz() const
number of points in z
Definition gridX.h:687
real_type hy() const
cell size in y
Definition gridX.h:621
unsigned Ny() const
number of cells in y
Definition gridX.h:669
real_type hz() const
cell size in z
Definition gridX.h:627
unsigned Nx() const
number of points in x
Definition gridX.h:651
real_type y0() const
left boundary in y
Definition gridX.h:570
unsigned inner_Nx() const
number of topological cells in x
Definition gridX.h:657
real_type fy() const
partition factor in y
Definition gridX.h:639