A 3D grid class with X-point topology.
More...
|
host_vector | abscissas (unsigned u=0) const |
|
host_vector | weights (unsigned u=0) const |
|
unsigned | shape (unsigned u=0) const |
|
auto | get_shape () const |
|
real_type | x0 () const |
| left boundary in x
|
|
real_type | x1 () const |
| right boundary in x
|
|
real_type | y0 () const |
| left boundary in y
|
|
real_type | y1 () const |
| right boundary in y
|
|
real_type | z0 () const |
| left boundary in z
|
|
real_type | z1 () const |
| right boundary in z
|
|
real_type | lx () const |
| length in x
|
|
real_type | ly () const |
| length in y
|
|
real_type | lz () const |
| length in z
|
|
real_type | hx () const |
| cell size in x
|
|
real_type | hy () const |
| cell size in y
|
|
real_type | hz () const |
| cell size in z
|
|
real_type | fx () const |
| partition factor in x
|
|
real_type | fy () const |
| partition factor in y
|
|
unsigned | n () const |
| number of polynomial coefficients in x and y
|
|
unsigned | Nx () const |
| number of points in x
|
|
unsigned | inner_Nx () const |
| number of topological cells in x
|
|
unsigned | outer_Nx () const |
| number of smooth rows in x
|
|
unsigned | Ny () const |
| number of cells in y
|
|
unsigned | inner_Ny () const |
| number of cells in the inner region of y
|
|
unsigned | outer_Ny () const |
| number of cells in one of the outer regions of y
|
|
unsigned | Nz () const |
| number of points in z
|
|
bc | bcx () const |
| boundary conditions in x
|
|
bc | bcy () const |
| boundary conditions in y
|
|
bc | bcz () const |
| boundary conditions in z
|
|
RealGrid< real_type, 3 > | grid () const |
| Return a copy without topology.
|
|
unsigned | size () const |
| real_typehe total number of points
|
|
void | display (std::ostream &os=std::cout) const |
| Display.
|
|
bool | contains (real_type x, real_type y, real_type z) const |
| Check if the grid contains a point.
|
|
|
static constexpr unsigned | ndim () |
| number of dimensions : 3
|
|
|
| ~aRealTopologyX3d ()=default |
| disallow destruction through base class pointer
|
|
| aRealTopologyX3d ()=default |
|
| aRealTopologyX3d (real_type x0, real_type x1, real_type y0, real_type y1, real_type z0, real_type z1, real_type fx, real_type fy, unsigned n, unsigned Nx, unsigned Ny, unsigned Nz, bc bcx, bc bcy, bc bcz) |
| Construct a 3D X-point grid.
|
|
| aRealTopologyX3d (const aRealTopologyX3d &src)=default |
|
aRealTopologyX3d & | operator= (const aRealTopologyX3d &src)=default |
|
template<class real_type>
struct dg::aRealTopologyX3d< real_type >
A 3D grid class with X-point topology.
In the third dimension only 1 polynomial coefficient is used, not n. In 2d it looks like
v |--- ---------- ---|
x |--- ---------- ---|
fx*Lx
|--- ---------- ---|
real_type fx() const
partition factor in x
Definition gridX.h:633
real_type fy() const
partition factor in y
Definition gridX.h:639
◆ host_grid
template<class real_type >
◆ host_vector
template<class real_type >
The host vector type used by host functions like evaluate.
◆ value_type
template<class real_type >
◆ ~aRealTopologyX3d()
template<class real_type >
disallow destruction through base class pointer
◆ aRealTopologyX3d() [1/3]
template<class real_type >
◆ aRealTopologyX3d() [2/3]
template<class real_type >
dg::aRealTopologyX3d< real_type >::aRealTopologyX3d |
( |
real_type | x0, |
|
|
real_type | x1, |
|
|
real_type | y0, |
|
|
real_type | y1, |
|
|
real_type | z0, |
|
|
real_type | z1, |
|
|
real_type | fx, |
|
|
real_type | fy, |
|
|
unsigned | n, |
|
|
unsigned | Nx, |
|
|
unsigned | Ny, |
|
|
unsigned | Nz, |
|
|
bc | bcx, |
|
|
bc | bcy, |
|
|
bc | bcz ) |
|
inlineprotected |
Construct a 3D X-point grid.
- Parameters
-
x0 | left boundary in x |
x1 | right boundary in x |
y0 | lower boundary in y |
y1 | upper boundary in y |
z0 | lower boundary in z |
z1 | upper boundary in z |
fx | factor for the partition in x-direction |
fy | factor for the partition in y-direction |
n | # of polynomial coefficients per (x-,y-) dimension (1<=n<=20, note that the library is optimized for n=3 ) |
- Attention
- # of polynomial coefficients in z direction is always 1
- Parameters
-
Nx | # of points in x |
Ny | # of points in y |
Nz | # of points in z |
- Parameters
-
bcx | boundary condition in x |
bcy | boundary condition in y |
bcz | boundary condition in z |
◆ aRealTopologyX3d() [3/3]
template<class real_type >
explicit copy constructor (default)
- Parameters
-
◆ abscissas()
template<class real_type >
◆ bcx()
template<class real_type >
boundary conditions in x
- Returns
◆ bcy()
template<class real_type >
boundary conditions in y
- Returns
◆ bcz()
template<class real_type >
boundary conditions in z
- Returns
◆ contains()
template<class real_type >
Check if the grid contains a point.
- Note
- doesn't check periodicity!!
- Parameters
-
x | x-point to check |
y | y-point to check |
z | z-point to check |
- Returns
- true if x0()<=x<=x1() and y0()<=y<=y1() and z0()<=z<=z1() , false else
◆ display()
template<class real_type >
◆ fx()
template<class real_type >
partition factor in x
- Returns
◆ fy()
template<class real_type >
partition factor in y
- Returns
◆ get_shape()
template<class real_type >
◆ grid()
template<class real_type >
Return a copy without topology.
- Returns
◆ hx()
template<class real_type >
◆ hy()
template<class real_type >
◆ hz()
template<class real_type >
◆ inner_Nx()
template<class real_type >
number of topological cells in x
- Returns
◆ inner_Ny()
template<class real_type >
number of cells in the inner region of y
- Returns
◆ lx()
template<class real_type >
◆ ly()
template<class real_type >
◆ lz()
template<class real_type >
◆ n()
template<class real_type >
number of polynomial coefficients in x and y
- Returns
◆ ndim()
template<class real_type >
◆ Nx()
template<class real_type >
number of points in x
- Returns
◆ Ny()
template<class real_type >
number of cells in y
- Returns
◆ Nz()
template<class real_type >
number of points in z
- Returns
◆ operator=()
template<class real_type >
explicit assignment operator (default)
- Parameters
-
◆ outer_Nx()
template<class real_type >
number of smooth rows in x
- Returns
◆ outer_Ny()
template<class real_type >
number of cells in one of the outer regions of y
- Returns
◆ shape()
template<class real_type >
◆ size()
template<class real_type >
real_typehe total number of points
- Returns
- n*n*Nx*Ny*Nz
◆ weights()
template<class real_type >
◆ x0()
template<class real_type >
left boundary in x
- Returns
◆ x1()
template<class real_type >
right boundary in x
- Returns
◆ y0()
template<class real_type >
left boundary in y
- Returns
◆ y1()
template<class real_type >
right boundary in y
- Returns
◆ z0()
template<class real_type >
left boundary in z
- Returns
◆ z1()
template<class real_type >
right boundary in z
- Returns
The documentation for this struct was generated from the following file: