Discontinuous Galerkin Library
#include "dg/algorithm.h"
Loading...
Searching...
No Matches
multistep_tableau.h
Go to the documentation of this file.
1#pragma once
2
3#include <vector>
4#include <string>
5#include <unordered_map>
6
7namespace dg{
32template<class real_type>
34{
35 using value_type = real_type;
46 MultistepTableau( unsigned steps, unsigned order, const
47 std::vector<real_type>& a_v, const std::vector<real_type>& b_v,
48 const std::vector<real_type>& c_v): m_steps(steps), m_order(order),
49 m_a(a_v), m_b(b_v), m_c(c_v){
50 if( m_c.empty())
51 m_c.assign( steps+1, 0);
52 if( m_b.empty())
53 m_b.assign( steps, 0);
54 }
55
61 real_type a( unsigned i){ return m_a[i];}
67 real_type ex( unsigned i){ return m_b[i];}
73 real_type im( unsigned i){ return m_c[i];}
75 unsigned steps() const {
76 return m_steps;
77 }
79 unsigned order() const {
80 return m_order;
81 }
83 bool isExplicit() const{
84 for( unsigned i=0; i<m_steps; i++)
85 if( m_b[i]!=0)
86 return true;
87 return false;
88 }
90 bool isImplicit() const{
91 for( unsigned i=0; i<m_steps+1; i++)
92 if( m_c[i]!=0)
93 return true;
94 return false;
95 }
96 private:
97 unsigned m_steps, m_order;
98 std::vector<real_type> m_a, m_b, m_c;
99};
100
102namespace tableau
103{
104template<class real_type>
105MultistepTableau<real_type> imex_euler_1_1()
106{
107 unsigned steps = 1, order = 1;
108 std::vector<real_type> a(steps,0), b(steps, 0), c(steps+1,0);
109 a[0] = b[0] = c[0] = 1;
110 return MultistepTableau<real_type>( steps, order, a, b, c);
111}
112template<class real_type>
113MultistepTableau<real_type> imex_adams_2_2()
114{
115 // 2nd order AB method extended to ImEx
116 // C = 4/9 ~ 0.444 D = 0.33
117 unsigned steps = 2, order = 2;
118 std::vector<real_type> a(steps,0), b(steps, 0), c(steps+1,0);
119 a[0] = 1.;
120 b[0] = 3./2.;
121 b[1] = -1./2.;
122 c[0] = 9./16.;
123 c[1] = 3./8.;
124 c[2] = 1./16.;
125 return MultistepTableau<real_type>( steps, order, a, b, c);
126}
127//For some reason this tableau does not pass the convergence test
128//template<class real_type>
129//MultistepTableau<real_type> imex_adams_3_3()
130//{
131// // 3rd order AB method extended to ImEx
132// // C ~ 0.16, D = 0.67
133// unsigned steps = 3, order = 3;
134// std::vector<real_type> a(steps,0), b(steps, 0), c(steps+1,0);
135// a[0] = 1.;
136// b[0] = 23./12.;
137// b[1] = -4./3.;
138// b[2] = 5./12.;
139// c[0] = 4661./10000.;
140// c[1] = 15551./30000.;
141// c[2] = 1949/30000;
142// c[3] = -1483./30000.;
143// return MultistepTableau<real_type>( steps, order, a, b, c);
144//}
145template<class real_type>
146MultistepTableau<real_type> imex_koto_2_2()
147{
148 // stabilized 2nd order method
149 unsigned steps = 2, order = 2;
150 std::vector<real_type> am(steps,0), bm(steps, 0), cm(steps+1,0);
151 std::vector<real_type> ap(steps+1,0), bp(steps+1, 0), cp(steps+1,0);
152 real_type a = 1.5, b = 1.5;
153 //real_type a = 20., b = 20.;
154 ap[0] = a;
155 ap[1] = 1-2.*a;
156 ap[2] = a-1;
157 cp[0] = b;
158 cp[1] = 0.5+a-2*b;
159 cp[2] = 0.5-a+b;
160 bp[1] = 0.5+a;
161 bp[2] = 0.5-a;
162 am[0] = -ap[1]/a, am[1] = -ap[2]/a;
163 bm[0] = bp[1]/a, bm[1] = bp[2]/a;
164 cm[0] = cp[0]/a, cm[1] = cp[1]/a, cm[2] = cp[2]/a;
165 return MultistepTableau<real_type>( steps, order, am, bm, cm);
166}
167
168template<class real_type>
169MultistepTableau<real_type> imex_bdf(unsigned steps)
170{
171 unsigned order = steps;
172 std::vector<real_type> a(steps,0), b(steps, 0), c(steps+1,0);
173 switch( steps)
174 {
175 case( 2):
176 // C = 5/8 ~ 0.625 D = 0
177 a[0] = 4./3.; b[0] = 4./3.;
178 a[1] = -1./3.; b[1] = -2./3.;
179 c[0] = 2./3.;
180 break;
181 case(3):
182 //The Karniadakis method
183 // C = 7/18 ~ 0.39 D = 0
184 a[0] = 18./11.; b[0] = 18./11.;
185 a[1] = -9./11.; b[1] = -18./11.;
186 a[2] = 2./11.; b[2] = 6./11.;
187 c[0] = 6./11.;
188 break;
189 case(4):
190 // C = 7/32 ~ 0.22 , D = 0
191 a[0] = 48./25.; b[0] = 48./25.;
192 a[1] = -36./25.; b[1] = -72./25.;
193 a[2] = 16./25.; b[2] = 48./25.;
194 a[3] = - 3./25.; b[3] = -12./25.;
195 c[0] = 12./25.;
196 break;
197 case(5):
198 // C = 0.0867 , D = 0
199 a[0] = 300./137.; b[0] = 300./137.;
200 a[1] = -300./137.; b[1] = -600./137.;
201 a[2] = 200./137.; b[2] = 600./137.;
202 a[3] = -75./137.; b[3] = -300./137.;
203 a[4] = 12./137.; b[4] = 60./137.;
204 c[0] = 60./137.;
205 break;
206 case (6):
207 a = {360./147.,-450./147.,400./147.,-225./147.,72./147.,-10./147.};
208 b = {360./147.,-900./147.,1200./147.,-900./147.,360./147.,-60./147.};
209 c[0] = 60./147.;
210 break;
211 }
212 return MultistepTableau<real_type>( steps, order, a, b, c);
213}
214
215template<class real_type>
216MultistepTableau<real_type> imex_tvb(unsigned steps)
217{
218 unsigned order = steps;
219 std::vector<real_type> a(steps,0), b(steps, 0), c(steps+1,0);
220 switch( steps)
221 {
222 case(3):
223 // C = 0.536 D = 0.639
224 a[0] = 3909./2048.; b[0] = 18463./12288.;
225 a[1] = -1367./1024.; b[1] = -1271./768.;
226 a[2] = 873./2048.; b[2] = 8233./12288.;
227 c[0] = 1089./2048.;
228 c[1] = -1139./12288.;
229 c[2] = -367./6144.;
230 c[3] = 1699./12288.;
231 break;
232 case(4):
233 // C = 0.458 , D = 0.685
234 a[0] = 21531./8192.; b[0] = 13261./8192.;
235 a[1] = -22753./8192.; b[1] = -75029./24576.;
236 a[2] = 12245./8192.; b[2] = 54799./24576.;
237 a[3] = -2831./8192. ; b[3] = -15245./24576.;
238 c[0] = 4207./8192.;
239 c[1] = -3567./8192.;
240 c[2] = 697./24576.;
241 c[3] = 4315./24576.;
242 c[4] = -41./384.;
243 break;
244 case(5):
245 // C = 0.376 , D = 0.709
246 a[0] = 13553./4096.; b[0] = 10306951./5898240.;
247 a[1] = -38121./8192.; b[1] = -13656497./2949120.;
248 a[2] = 7315./2048.; b[2] = 1249949./245760.;
249 a[3] = -6161/4096. ; b[3] = -7937687./2949120.;
250 a[4] = 2269./8192.; b[4] = 3387361./5898240.;
251 c[0] = 4007./8192.;
252 c[1] = -4118249./5898240.;
253 c[2] = 768703./2949120.;
254 c[3] = 47849./245760.;
255 c[4] = -725087./2949120.;
256 c[5] = 502321./5898240.;
257 break;
258 }
259 return MultistepTableau<real_type>( steps, order, a, b, c);
260}
261
262template<class real_type>
263MultistepTableau<real_type> ab(unsigned order)
264{
265 unsigned steps = order;
266 std::vector<real_type> a(steps,0), b(steps, 0), c(steps+1,0);
267 a[0]= 1.;
268 switch (order){
269 case 1: b = {1}; break;
270 case 2: b = {1.5, -0.5}; break;
271 case 3: b = { 23./12., -4./3., 5./12.}; break;
272 case 4: b = {55./24., -59./24., 37./24., -3./8.}; break;
273 case 5: b = { 1901./720., -1387./360., 109./30., -637./360., 251./720.}; break;
274 default: throw dg::Error(dg::Message()<<"Order "<<order<<" not implemented in AdamsBashforth!");
275 }
276 return MultistepTableau<real_type>( steps, order, a, b, c);
277}
278
279template<class real_type>
280MultistepTableau<real_type> tvb(unsigned steps)
281{
282 unsigned order = steps;
283 std::vector<real_type> a(steps,0), b(steps, 0), c(steps+1,0);
284 switch (steps){
285 case 1:
286 a = {1.};
287 b = {1.}; break;
288 case 2:
289 a = {4./3., -1./3.};
290 b = {4./3., -2./3.}; break; //CLM = 0.5
291 case 3: //CLM = 0.54...
292 a[0] = 1.908535476882378; b[0] = 1.502575553858997;
293 a[1] = -1.334951446162515; b[1] = -1.654746338401493;
294 a[2] = 0.426415969280137; b[2] = 0.670051276940255;
295 break;
296 case 4: //CLM = 0.45...
297 a[0] = 2.628241000683208; b[0] = 1.618795874276609;
298 a[1] = -2.777506277494861; b[1] = -3.052866947601049;
299 a[2] = 1.494730011212510; b[2] = 2.229909318681302;
300 a[3] = -0.345464734400857; b[3] = -0.620278703629274;
301 break;
302 case 5: //CLM = 0.37...
303 a[0] = 3.308891758551210; b[0] = 1.747442076919292;
304 a[1] = -4.653490937946655; b[1] = -4.630745565661800;
305 a[2] = 3.571762873789854; b[2] = 5.086056171401077;
306 a[3] = -1.504199914126327; b[3] = -2.691494591660196;
307 a[4] = 0.277036219731918; b[4] = 0.574321855183372;
308 break;
309 case 6: //CLM = 0.32...
310 a[0] = 4.113382628475685; b[0] = 1.825457674048542;
311 a[1] = -7.345730559324184; b[1] = -6.414174588309508;
312 a[2] = 7.393648314992094; b[2] = 9.591671249204753;
313 a[3] = -4.455158576186636; b[3] = -7.583521888026967;
314 a[4] = 1.523638279938299; b[4] = 3.147082225022105;
315 a[5] = -0.229780087895259; b[5] = -0.544771649561925;
316 break;
317 default: throw dg::Error(dg::Message()<<"Order "<<steps<<" not implemented in TVB scheme!");
318 }
319 return MultistepTableau<real_type>( steps, order, a, b, c);
320}
321template<class real_type>
322MultistepTableau<real_type> ssp(unsigned steps)
323{
324 std::vector<real_type> a(steps,0), b(steps, 0), c(steps+1,0);
325 unsigned order = 0;
326 switch (steps){
327 case 1: order = 1;
328 a = {1.};
329 b = {1.}; break;
330 case 2: order = 2;
331 a = {4./5., 1./5.};
332 b = {8./5., -2./5.}; break; //CLM = 0.5 ... ,order 2
333 case 3: order = 2;
334 a = { 3./4., 0., 1./4.};
335 b = { 3./2., 0., 0. }; break; //CLM = 0.5..., order 2
336 case 4: order = 2;
337 a = {8./9., 0., 0., 1./9.};
338 b = {4./3., 0., 0., 0.}; break; //CLM = 0.66..., order 2
339 case 5: order = 3;
340 a = {25./32., 0., 0., 0., 7./32.};
341 b = {25./16.,0.,0.,0.,5./16.}; break; //CLM 0.5, order 3
342 case 6: order = 3;
343 a = {108./125.,0.,0.,0.,0.,17./125.};
344 b = {36./25.,0.,0.,0.,0.,6./25.}; break; //CLM 0.567, order 3
345 default: throw dg::Error(dg::Message()<<"Stage "<<steps<<" not implemented in SSP scheme!");
346 }
347 return MultistepTableau<real_type>( steps, order, a, b, c);
348}
349
350}//namespace tableau
352
409
411namespace create{
412
413inline const std::unordered_map<std::string, enum multistep_identifier> str2lmsid{
414 //Implicit-Explicit methods
415 {"Euler", IMEX_EULER_1_1},
416 {"Euler-1-1", IMEX_EULER_1_1},
417 {"ImEx-Adams-2-2", IMEX_ADAMS_2_2},
418 {"ImEx-Koto-2-2", IMEX_KOTO_2_2},
419 {"ImEx-BDF-2-2", IMEX_BDF_2_2},
420 {"ImEx-BDF-3-3", IMEX_BDF_3_3},
421 {"Karniadakis", IMEX_BDF_3_3},
422 {"ImEx-BDF-4-4", IMEX_BDF_4_4},
423 {"ImEx-BDF-5-5", IMEX_BDF_5_5},
424 {"ImEx-BDF-6-6", IMEX_BDF_6_6},
425 {"ImEx-TVB-3-3", IMEX_TVB_3_3},
426 {"ImEx-TVB-4-4", IMEX_TVB_4_4},
427 {"ImEx-TVB-5-5", IMEX_TVB_5_5},
428 //Explicit methods
429 {"AB-1-1", AB_1_1},
430 {"AB-2-2", AB_2_2},
431 {"AB-3-3", AB_3_3},
432 {"AB-4-4", AB_4_4},
433 {"AB-5-5", AB_5_5},
434 {"eBDF-1-1", eBDF_1_1},
435 {"eBDF-2-2", eBDF_2_2},
436 {"eBDF-3-3", eBDF_3_3},
437 {"eBDF-4-4", eBDF_4_4},
438 {"eBDF-5-5", eBDF_5_5},
439 {"eBDF-6-6", eBDF_6_6},
440 {"TVB-1-1", TVB_1_1},
441 {"TVB-2-2", TVB_2_2},
442 {"TVB-3-3", TVB_3_3},
443 {"TVB-4-4", TVB_4_4},
444 {"TVB-5-5", TVB_5_5},
445 {"TVB-6-6", TVB_6_6},
446 {"SSP-1-1", SSP_1_1},
447 {"SSP-2-2", SSP_2_2},
448 {"SSP-3-2", SSP_3_2},
449 {"SSP-4-2", SSP_4_2},
450 {"SSP-5-3", SSP_5_3},
451 {"SSP-6-3", SSP_6_3},
452 // implicit methods
453 {"BDF-1-1", BDF_1_1},
454 {"BDF-2-2", BDF_2_2},
455 {"BDF-3-3", BDF_3_3},
456 {"BDF-4-4", BDF_4_4},
457 {"BDF-5-5", BDF_5_5},
458 {"BDF-6-6", BDF_6_6},
459};
460inline enum multistep_identifier str2lmstableau( std::string name)
461{
462 auto it = str2lmsid.find(name);
463 if( it == str2lmsid.end())
464 throw dg::Error(dg::Message(_ping_)<<"Multistep coefficients for "<<name<<" not found!");
465 return it->second;
466}
467inline std::string lmstableau2str( enum multistep_identifier id)
468{
469 for( auto name: str2lmsid)
470 {
471 if( name.second == id)
472 return name.first;
473 }
474 throw dg::Error(dg::Message(_ping_)<<"Tableau conversion failed!");
475}
476
477template<class real_type>
478MultistepTableau<real_type> lmstableau( enum multistep_identifier id)
479{
480 switch(id){
481 case IMEX_EULER_1_1:
482 return dg::tableau::imex_euler_1_1<real_type>();
483 case IMEX_ADAMS_2_2:
484 return dg::tableau::imex_adams_2_2<real_type>();
485 case IMEX_KOTO_2_2:
486 return dg::tableau::imex_koto_2_2<real_type>();
487 case IMEX_BDF_2_2:
488 return dg::tableau::imex_bdf<real_type>(2);
489 case IMEX_BDF_3_3:
490 return dg::tableau::imex_bdf<real_type>(3);
491 case IMEX_BDF_4_4:
492 return dg::tableau::imex_bdf<real_type>(4);
493 case IMEX_BDF_5_5:
494 return dg::tableau::imex_bdf<real_type>(5);
495 case IMEX_BDF_6_6:
496 return dg::tableau::imex_bdf<real_type>(6);
497 case IMEX_TVB_3_3:
498 return dg::tableau::imex_tvb<real_type>(3);
499 case IMEX_TVB_4_4:
500 return dg::tableau::imex_tvb<real_type>(4);
501 case IMEX_TVB_5_5:
502 return dg::tableau::imex_tvb<real_type>(5);
503 case AB_1_1:
504 return dg::tableau::ab<real_type>(1);
505 case AB_2_2:
506 return dg::tableau::ab<real_type>(2);
507 case AB_3_3:
508 return dg::tableau::ab<real_type>(3);
509 case AB_4_4:
510 return dg::tableau::ab<real_type>(4);
511 case AB_5_5:
512 return dg::tableau::ab<real_type>(5);
513 case eBDF_1_1:
514 return dg::tableau::imex_euler_1_1<real_type>();
515 case eBDF_2_2:
516 return dg::tableau::imex_bdf<real_type>(2);
517 case eBDF_3_3:
518 return dg::tableau::imex_bdf<real_type>(3);
519 case eBDF_4_4:
520 return dg::tableau::imex_bdf<real_type>(4);
521 case eBDF_5_5:
522 return dg::tableau::imex_bdf<real_type>(5);
523 case eBDF_6_6:
524 return dg::tableau::imex_bdf<real_type>(6);
525 case TVB_1_1:
526 return dg::tableau::imex_euler_1_1<real_type>();
527 case TVB_2_2:
528 return dg::tableau::tvb<real_type>(2);
529 case TVB_3_3:
530 return dg::tableau::tvb<real_type>(3);
531 case TVB_4_4:
532 return dg::tableau::tvb<real_type>(4);
533 case TVB_5_5:
534 return dg::tableau::tvb<real_type>(5);
535 case TVB_6_6:
536 return dg::tableau::tvb<real_type>(6);
537 case SSP_1_1:
538 return dg::tableau::ssp<real_type>(1);
539 case SSP_2_2:
540 return dg::tableau::ssp<real_type>(2);
541 case SSP_3_2:
542 return dg::tableau::ssp<real_type>(3);
543 case SSP_4_2:
544 return dg::tableau::ssp<real_type>(4);
545 case SSP_5_3:
546 return dg::tableau::ssp<real_type>(5);
547 case SSP_6_3:
548 return dg::tableau::ssp<real_type>(6);
549 case BDF_1_1:
550 return dg::tableau::imex_euler_1_1<real_type>();
551 case BDF_2_2:
552 return dg::tableau::imex_bdf<real_type>(2);
553 case BDF_3_3:
554 return dg::tableau::imex_bdf<real_type>(3);
555 case BDF_4_4:
556 return dg::tableau::imex_bdf<real_type>(4);
557 case BDF_5_5:
558 return dg::tableau::imex_bdf<real_type>(5);
559 case BDF_6_6:
560 return dg::tableau::imex_bdf<real_type>(6);
561 }
562 return MultistepTableau<real_type>(); //avoid compiler warning
563}
564
565
566template<class real_type>
567MultistepTableau<real_type> lmstableau( std::string name)
568{
569 return lmstableau<real_type>( str2lmstableau(name));
570}
571
572}//namespace create
574
646template<class real_type>
648{
649 using value_type = real_type;
653
659 ConvertsToMultistepTableau( enum tableau_identifier id):m_t( dg::create::lmstableau<real_type>(id)){}
670 ConvertsToMultistepTableau( std::string name):m_t(
671 dg::create::lmstableau<real_type>(name)){}
672
674 ConvertsToMultistepTableau( const char* name):m_t(
675 dg::create::lmstableau<real_type>(std::string(name))){}
680 return m_t;
681 }
682 private:
684};
685
686}//namespace dg
class intended for the use in throw statements
Definition exceptions.h:83
small class holding a stringstream
Definition exceptions.h:29
#define _ping_
Definition exceptions.h:12
tableau_identifier
Identifiers for Butcher Tableaus.
Definition tableau.h:1334
multistep_identifier
Identifiers for Multistep Tableaus.
Definition multistep_tableau.h:364
@ AB_5_5
Definition multistep_tableau.h:382
@ IMEX_BDF_6_6
Definition multistep_tableau.h:373
@ IMEX_TVB_5_5
Definition multistep_tableau.h:376
@ BDF_6_6
Definition multistep_tableau.h:407
@ SSP_2_2
Definition multistep_tableau.h:396
@ eBDF_4_4
Definition multistep_tableau.h:386
@ BDF_2_2
Definition multistep_tableau.h:403
@ BDF_5_5
Definition multistep_tableau.h:406
@ SSP_3_2
Definition multistep_tableau.h:397
@ TVB_4_4
Definition multistep_tableau.h:392
@ IMEX_KOTO_2_2
Definition multistep_tableau.h:368
@ SSP_4_2
Definition multistep_tableau.h:398
@ eBDF_5_5
Definition multistep_tableau.h:387
@ TVB_1_1
Definition multistep_tableau.h:389
@ eBDF_1_1
Definition multistep_tableau.h:383
@ eBDF_3_3
Definition multistep_tableau.h:385
@ TVB_3_3
Definition multistep_tableau.h:391
@ SSP_1_1
Definition multistep_tableau.h:395
@ IMEX_TVB_3_3
Definition multistep_tableau.h:374
@ AB_4_4
Definition multistep_tableau.h:381
@ eBDF_6_6
Definition multistep_tableau.h:388
@ BDF_3_3
Definition multistep_tableau.h:404
@ IMEX_EULER_1_1
Definition multistep_tableau.h:366
@ AB_3_3
Definition multistep_tableau.h:380
@ AB_2_2
Definition multistep_tableau.h:379
@ IMEX_BDF_5_5
Definition multistep_tableau.h:372
@ IMEX_ADAMS_2_2
Definition multistep_tableau.h:367
@ BDF_4_4
Definition multistep_tableau.h:405
@ IMEX_TVB_4_4
Definition multistep_tableau.h:375
@ SSP_5_3
Definition multistep_tableau.h:399
@ AB_1_1
Definition multistep_tableau.h:378
@ eBDF_2_2
Definition multistep_tableau.h:384
@ BDF_1_1
Definition multistep_tableau.h:402
@ TVB_2_2
Definition multistep_tableau.h:390
@ SSP_6_3
Definition multistep_tableau.h:400
@ TVB_5_5
Definition multistep_tableau.h:393
@ IMEX_BDF_2_2
Definition multistep_tableau.h:369
@ TVB_6_6
Definition multistep_tableau.h:394
@ IMEX_BDF_3_3
Definition multistep_tableau.h:370
@ IMEX_BDF_4_4
Definition multistep_tableau.h:371
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
Convert identifiers to their corresponding dg::MultistepTableau.
Definition multistep_tableau.h:648
ConvertsToMultistepTableau(enum tableau_identifier id)
Create MultistepTableau from dg::tableau_identifier.
Definition multistep_tableau.h:659
ConvertsToMultistepTableau(std::string name)
Create MultistepTableau from its name (very useful)
Definition multistep_tableau.h:670
real_type value_type
Definition multistep_tableau.h:649
ConvertsToMultistepTableau(const char *name)
Create MultistepTableau from its name (very useful)
Definition multistep_tableau.h:674
ConvertsToMultistepTableau(MultistepTableau< real_type > tableau)
Definition multistep_tableau.h:652
Manage coefficients of Multistep methods.
Definition multistep_tableau.h:34
unsigned steps() const
The number of stages s.
Definition multistep_tableau.h:75
bool isImplicit() const
True if any of the implicit coefficients c_i are non-zero.
Definition multistep_tableau.h:90
real_type a(unsigned i)
Read the a_i coefficients.
Definition multistep_tableau.h:61
real_type ex(unsigned i)
Read the explicit (b_i) coefficients.
Definition multistep_tableau.h:67
unsigned order() const
global order of accuracy for the method
Definition multistep_tableau.h:79
real_type im(unsigned i)
Read the implicit (c_i) coefficients.
Definition multistep_tableau.h:73
MultistepTableau()
No memory allocation.
Definition multistep_tableau.h:37
real_type value_type
Definition multistep_tableau.h:35
MultistepTableau(unsigned steps, unsigned order, const std::vector< real_type > &a_v, const std::vector< real_type > &b_v, const std::vector< real_type > &c_v)
Construct a tableau.
Definition multistep_tableau.h:46
bool isExplicit() const
True if any of the explicit coefficients b_i are non-zero.
Definition multistep_tableau.h:83