Discontinuous Galerkin Library
#include "dg/algorithm.h"
|
Generalized slope limiter for dG methods. More...
Public Member Functions | |
CSRSlopeLimiter (real_type mod=(real_type) 0) | |
DG_DEVICE void | operator() (unsigned i, const int *row_offsets, const int *column_indices, const real_type *values, const real_type *x, real_type *y) |
Generalized slope limiter for dG methods.
Consider the one-dimensional case. The first step is to transform the given values to compute modal coefficients. The linear part is given by \( u_h^1(x) = u_{n0}p_{n0}(x) + u_{n1}p_{n1}(x)\) with \(p_{n0}(x) = 1\) and \( p_{n1}(x) = 2(x-x_n)/h\). Then the limiter is defined via
\[ \Lambda\Pi ( u_h^1)|_n = u_{n0} + \textrm{minmod}\left( u_{n1}, ( u_{(n+1)0} - u_{n0}), (u_{(n)0} - u_{(n-1)0})\right)p_{n1}(x) \]
If the result of the minmod function is \( u_{n1}\), then \( \Lambda\Pi( u_h)|_n = u_h|_n\), else \( \Lambda\Pi(u_h)|_n = \Lambda\Pi(u_h^1)|_n\) Must be applied in combination with limiter_stencil
|
inline |
|
inline |