|
SparseTensor< MPI_Vector< thrust::host_vector< real_type > > > | jacobian () const |
| The Jacobian of the coordinate transformation from physical to computational space. More...
|
|
SparseTensor< MPI_Vector< thrust::host_vector< real_type > > > | metric () const |
| The (inverse) metric tensor of the coordinate system. More...
|
|
std::vector< MPI_Vector< thrust::host_vector< real_type > > > | map () const |
| The coordinate map from computational to physical space. More...
|
|
virtual aRealMPIGeometry2d * | clone () const =0 |
| Geometries are cloneable. More...
|
|
virtual aRealGeometry2d< real_type > * | global_geometry () const =0 |
| Construct the global non-MPI geometry. More...
|
|
virtual | ~aRealMPIGeometry2d ()=default |
| allow deletion through base class pointer More...
|
|
real_type | x0 () const |
| Return global x0. More...
|
|
real_type | x1 () const |
| Return global x1. More...
|
|
real_type | y0 () const |
| Return global y0. More...
|
|
real_type | y1 () const |
| Return global y1. More...
|
|
real_type | lx () const |
| Return global lx. More...
|
|
real_type | ly () const |
| Return global ly. More...
|
|
real_type | hx () const |
| Return global hx. More...
|
|
real_type | hy () const |
| Return global hy. More...
|
|
unsigned | n () const |
| Return n. More...
|
|
unsigned | nx () const |
| number of polynomial coefficients in x More...
|
|
unsigned | ny () const |
| number of polynomial coefficients in y More...
|
|
unsigned | Nx () const |
| Return the global number of cells. More...
|
|
unsigned | Ny () const |
| Return the global number of cells. More...
|
|
bc | bcx () const |
| global x boundary More...
|
|
bc | bcy () const |
| global y boundary More...
|
|
MPI_Comm | communicator () const |
| Return mpi cartesian communicator that is used in this grid. More...
|
|
const DLT< real_type > & | dltx () const |
| discrete legendre transformation in x More...
|
|
const DLT< real_type > & | dlty () const |
| discrete legendre transformation in y More...
|
|
unsigned | size () const |
| The total global number of points. More...
|
|
unsigned | local_size () const |
| The total local number of points. More...
|
|
void | display (std::ostream &os=std::cout) const |
| Display global and local grid. More...
|
|
int | pidOf (real_type x, real_type y) const |
| Returns the pid of the process that holds the local grid surrounding the given point. More...
|
|
void | multiplyCellNumbers (real_type fx, real_type fy) |
| Multiply the number of cells with a given factor. More...
|
|
void | set (unsigned new_n, unsigned new_Nx, unsigned new_Ny) |
| Set the number of polynomials and cells. More...
|
|
void | set (unsigned new_nx, unsigned new_Nx, unsigned new_ny, unsigned new_Ny) |
| Set the number of polynomials and cells. More...
|
|
bool | local2globalIdx (int localIdx, int PID, int &globalIdx) const |
| Map a local index plus the PID to a global vector index. More...
|
|
bool | global2localIdx (int globalIdx, int &localIdx, int &PID) const |
| Map a global vector index to a local vector Index and the corresponding PID. More...
|
|
const RealGrid2d< real_type > & | local () const |
| Return a non-MPI grid local for the calling process. More...
|
|
const RealGrid2d< real_type > & | global () const |
| Return the global non-MPI grid. More...
|
|
template<class real_type>
struct dg::aRealMPIGeometry2d< real_type >
This is the abstract interface class for a two-dimensional Geometry.
template<class real_type >
The Jacobian of the coordinate transformation from physical to computational space.
The elements of the Tensor are (if x,y are the coordinates in computational space and R,Z are the physical space coordinates)
\[ J = \begin{pmatrix} x_R(x,y) & x_Z(x,y) \\ y_R(x,y) & y_Z(x,y) \end{pmatrix} \]
- Returns
- Jacobian
- Note
- per default this will be the identity tensor
template<class real_type >
The (inverse) metric tensor of the coordinate system.
The elements of the inverse metric tensor are the contravariant elements of the metric \(g\). If x,y are the coordinates, then
\[ g^{-1} = \begin{pmatrix} g^{xx}(x,y) & g^{xy}(x,y) \\ & g^{yy}(x,y) \end{pmatrix} \]
- Returns
- symmetric tensor
- Note
- use the
dg::tensor::volume2d
function to compute the volume element from here
-
per default this will be the identity tensor