Discontinuous Galerkin Library
#include "dg/algorithm.h"

\( f(x,y) = \begin{cases} Ae^{1 + \left(\frac{(x-x_0)^2}{\sigma_x^2} + \frac{(y-y_0)^2}{\sigma_y^2} - 1\right)^{-1}} \text{ if } \frac{(x-x_0)^2}{\sigma_x^2} + \frac{(y-y_0)^2}{\sigma_y^2} < 1\\ 0 \text{ else} \end{cases} \) More...

Public Member Functions

 Cauchy (double x0, double y0, double sigma_x, double sigma_y, double amp)
 A blob that drops to zero. More...
 
DG_DEVICE double operator() (double x, double y) const
 
bool inside (double x, double y) const
 
double dx (double x, double y) const
 
double dxx (double x, double y) const
 
double dy (double x, double y) const
 
double dyy (double x, double y) const
 
double dxy (double x, double y) const
 

Detailed Description

\( f(x,y) = \begin{cases} Ae^{1 + \left(\frac{(x-x_0)^2}{\sigma_x^2} + \frac{(y-y_0)^2}{\sigma_y^2} - 1\right)^{-1}} \text{ if } \frac{(x-x_0)^2}{\sigma_x^2} + \frac{(y-y_0)^2}{\sigma_y^2} < 1\\ 0 \text{ else} \end{cases} \)

A bump that drops to zero and is infinitely continuously differentiable

Constructor & Destructor Documentation

◆ Cauchy()

dg::Cauchy::Cauchy ( double  x0,
double  y0,
double  sigma_x,
double  sigma_y,
double  amp 
)
inline

A blob that drops to zero.

Parameters
x0x-center-coordinate
y0y-center-coordinate
sigma_xradius in x (must be !=0)
sigma_yradius in y (must be !=0)
ampAmplitude

Member Function Documentation

◆ dx()

double dg::Cauchy::dx ( double  x,
double  y 
) const
inline

◆ dxx()

double dg::Cauchy::dxx ( double  x,
double  y 
) const
inline

◆ dxy()

double dg::Cauchy::dxy ( double  x,
double  y 
) const
inline

◆ dy()

double dg::Cauchy::dy ( double  x,
double  y 
) const
inline

◆ dyy()

double dg::Cauchy::dyy ( double  x,
double  y 
) const
inline

◆ inside()

bool dg::Cauchy::inside ( double  x,
double  y 
) const
inline

◆ operator()()

DG_DEVICE double dg::Cauchy::operator() ( double  x,
double  y 
) const
inline

The documentation for this struct was generated from the following file: