\(
f(x,y) = \begin{cases}
Ae^{1 + \left(\frac{(x-x_0)^2}{\sigma_x^2} + \frac{(y-y_0)^2}{\sigma_y^2} - 1\right)^{-1}} \text{ if } \frac{(x-x_0)^2}{\sigma_x^2} + \frac{(y-y_0)^2}{\sigma_y^2} < 1\\
0 \text{ else}
\end{cases}
\)
More...
|
| Cauchy (double x0, double y0, double sigma_x, double sigma_y, double amp) |
| A blob that drops to zero.
|
|
DG_DEVICE double | operator() (double x, double y) const |
|
bool | inside (double x, double y) const |
|
double | dx (double x, double y) const |
|
double | dxx (double x, double y) const |
|
double | dy (double x, double y) const |
|
double | dyy (double x, double y) const |
|
double | dxy (double x, double y) const |
|
\(
f(x,y) = \begin{cases}
Ae^{1 + \left(\frac{(x-x_0)^2}{\sigma_x^2} + \frac{(y-y_0)^2}{\sigma_y^2} - 1\right)^{-1}} \text{ if } \frac{(x-x_0)^2}{\sigma_x^2} + \frac{(y-y_0)^2}{\sigma_y^2} < 1\\
0 \text{ else}
\end{cases}
\)
A bump that drops to zero and is infinitely continuously differentiable
◆ Cauchy()
dg::Cauchy::Cauchy |
( |
double | x0, |
|
|
double | y0, |
|
|
double | sigma_x, |
|
|
double | sigma_y, |
|
|
double | amp ) |
|
inline |
A blob that drops to zero.
- Parameters
-
x0 | x-center-coordinate |
y0 | y-center-coordinate |
sigma_x | radius in x (must be !=0) |
sigma_y | radius in y (must be !=0) |
amp | Amplitude |
◆ dx()
double dg::Cauchy::dx |
( |
double | x, |
|
|
double | y ) const |
|
inline |
◆ dxx()
double dg::Cauchy::dxx |
( |
double | x, |
|
|
double | y ) const |
|
inline |
◆ dxy()
double dg::Cauchy::dxy |
( |
double | x, |
|
|
double | y ) const |
|
inline |
◆ dy()
double dg::Cauchy::dy |
( |
double | x, |
|
|
double | y ) const |
|
inline |
◆ dyy()
double dg::Cauchy::dyy |
( |
double | x, |
|
|
double | y ) const |
|
inline |
◆ inside()
bool dg::Cauchy::inside |
( |
double | x, |
|
|
double | y ) const |
|
inline |
◆ operator()()
DG_DEVICE double dg::Cauchy::operator() |
( |
double | x, |
|
|
double | y ) const |
|
inline |
The documentation for this struct was generated from the following file: