6#define M_PI 3.14159265358979323846
27template <
class T =
double>
35 PLUS( T value): x_(value){}
43template<
class T =
double >
53template <
class T =
double>
64template <
class T =
double>
81template <
class T =
double>
91template <
class T =
double>
98template <
class T =
double>
112template <
class T =
double>
119template <
class T =
double>
124 T absx =
x>0 ?
x : -
x;
125 T absy =
y>0 ?
y : -
y;
126 return absx > absy ? absx : absy;
131template <
class T =
double>
136 T absx =
x<0 ? -
x :
x;
137 T absy =
y<0 ? -
y :
y;
138 return absx < absy ? absx : absy;
150template <
class T =
double>
154 if (
x >= 0.0)
return x;
165template <
class T=
double>
177 return (fmod(
x,m_m) < 0 ) ? (m_m + fmod(
x,m_m)) : fmod(
x,m_m);
229 if(
x > 1e100 ||
x < -1e100)
235 if( !std::isfinite(
x))
237 if(
x > 1e100 ||
x < -1e100)
262 if( x1 > 0 && x2 > 0)
264 else if( x1 < 0 && x2 < 0)
272 if( x1 > 0 && x2 > 0)
273 return std::min(x1,x2);
274 else if( x1 < 0 && x2 < 0)
275 return std::max(x1,x2);
283 return this->
operator()( this->
operator()( x1, x2), x3);
302 return 2.*x1*x2/(x1+x2);
348template<
class Limiter>
356 return +hm*m_l( g0, gm);
358 return -hp*m_l( gp, g0);
373template<
class Limiter>
380 return v*m_s(v,gm,g0,gp,hm,hp);
407 Iris(
double psi_min,
double psi_max ):
408 m_psimin(psi_min), m_psimax(psi_max) { }
412 if( psi > m_psimax)
return 0.;
413 if( psi < m_psimin)
return 0.;
417 double m_psimin, m_psimax;
433 if( psi > psimax_)
return 0.;
453 if( psi > psimax_)
return psimax_;
479 m_xb(xb), m_s(sign){ }
484 if( (
x < m_xb && m_s == 1) || (
x > m_xb && m_s == -1))
return 0.;
498 Distance(
double x0,
double y0): m_x0(x0), m_y0(y0){}
501 return sqrt( (
x-m_x0)*(
x-m_x0) + (
y-m_y0)*(
y-m_y0));
513 Line(
double x0,
double y0,
double x1,
double y1) :
514 m_x0(x0), m_y0(y0), m_x1(x1), m_y1(y1){}
516 return m_y1*(
x-m_x0)/(m_x1-m_x0) + m_y0*(
x-m_x1)/(m_x0-m_x1);
519 double m_x0, m_y0, m_x1, m_y1;
599 Gaussian(
double x0,
double y0,
double sigma_x,
double sigma_y,
double amp)
600 : m_x0(x0), m_y0(y0), m_sigma_x(sigma_x), m_sigma_y(sigma_y), m_amp(amp){
601 assert( m_sigma_x != 0 &&
"sigma_x must not be 0 in Gaussian");
602 assert( m_sigma_y != 0 &&
"sigma_y must not be 0 in Gaussian");
619 exp( -((
x-m_x0)*(
x-m_x0)/2./m_sigma_x/m_sigma_x +
620 (
y-m_y0)*(
y-m_y0)/2./m_sigma_y/m_sigma_y) );
639 double m_x0, m_y0, m_sigma_x, m_sigma_y, m_amp;
665 Cauchy(
double x0,
double y0,
double sigma_x,
double sigma_y,
double amp): x0_(x0), y0_(y0), sigmaX_(sigma_x), sigmaY_(sigma_y), amp_(amp){
666 assert( sigma_x != 0 &&
"sigma_x must be !=0 in Cauchy");
667 assert( sigma_y != 0 &&
"sigma_y must be !=0 in Cauchy");
671 double xbar = (
x-x0_)/sigmaX_;
672 double ybar = (
y-y0_)/sigmaY_;
673 if( xbar*xbar + ybar*ybar < 1.)
674 return amp_*exp( 1. + 1./( xbar*xbar + ybar*ybar -1.) );
679 double xbar = (
x-x0_)/sigmaX_;
680 double ybar = (
y-y0_)/sigmaY_;
681 if( xbar*xbar + ybar*ybar < 1.)
686 double dx(
double x,
double y )
const{
687 double xbar = (
x-x0_)/sigmaX_;
688 double ybar = (
y-y0_)/sigmaY_;
689 double temp = sigmaX_*(xbar*xbar + ybar*ybar - 1.);
690 return -2.*(
x-x0_)*this->
operator()(x,
y)/temp/temp;
692 double dxx(
double x,
double y)
const{
693 double temp = sigmaY_*sigmaY_*(
x-x0_)*(
x-x0_) + sigmaX_*sigmaX_*((
y-y0_)*(
y-y0_) - sigmaY_*sigmaY_);
694 double bracket = sigmaX_*sigmaX_*((
y-y0_)*(
y-y0_)-sigmaY_*sigmaY_)*sigmaX_*sigmaX_*((
y-y0_)*(
y-y0_)-sigmaY_*sigmaY_)
695 -3.*sigmaY_*sigmaY_*sigmaY_*sigmaY_*(
x-x0_)*(
x-x0_)*(
x-x0_)*(
x-x0_)
696 -2.*sigmaY_*sigmaY_*sigmaX_*sigmaX_*(
x-x0_)*(
x-x0_)*(
y-y0_)*(
y-y0_);
697 return -2.*sigmaX_*sigmaX_*sigmaY_*sigmaY_*sigmaY_*sigmaY_*this->
operator()(x,
y)*bracket/temp/temp/temp/temp;
699 double dy(
double x,
double y)
const{
700 double xbar = (
x-x0_)/sigmaX_;
701 double ybar = (
y-y0_)/sigmaY_;
702 double temp = sigmaY_*(xbar*xbar + ybar*ybar - 1.);
703 return -2.*(
y-y0_)*this->
operator()(x,
y)/temp/temp;
705 double dyy(
double x,
double y)
const{
706 double temp = sigmaX_*sigmaX_*(
y-y0_)*(
y-y0_) + sigmaY_*sigmaY_*((
x-x0_)*(
x-x0_) - sigmaX_*sigmaX_);
707 double bracket = sigmaY_*sigmaY_*((
x-x0_)*(
x-x0_)-sigmaX_*sigmaX_)*sigmaY_*sigmaY_*((
x-x0_)*(
x-x0_)-sigmaX_*sigmaX_)
708 -3.*sigmaX_*sigmaX_*sigmaX_*sigmaX_*(
y-y0_)*(
y-y0_)*(
y-y0_)*(
y-y0_)
709 -2.*sigmaX_*sigmaX_*sigmaY_*sigmaY_*(
y-y0_)*(
y-y0_)*(
x-x0_)*(
x-x0_);
710 return -2.*sigmaY_*sigmaY_*sigmaX_*sigmaX_*sigmaX_*sigmaX_*this->
operator()(x,
y)*bracket/temp/temp/temp/temp;
712 double dxy(
double x,
double y )
const{
713 double xbar = (
x-x0_)/sigmaX_;
714 double ybar = (
y-y0_)/sigmaY_;
715 double temp = (xbar*xbar + ybar*ybar - 1.);
716 return 8.*xbar*ybar*this->
operator()(x,
y)/temp/temp/temp/sigmaX_/sigmaY_
717 + 4.*xbar*ybar*this->
operator()(x,
y)/temp/temp/temp/temp/sigmaX_/sigmaY_
721 double x0_, y0_, sigmaX_, sigmaY_, amp_;
744 CauchyX(
double x0,
double sigma_x,
double amp): x0_(x0), sigmaX_(sigma_x), amp_(amp){
745 assert( sigma_x != 0 &&
"sigma_x must be !=0 in Cauchy");
749 double xbar = (
x-x0_)/sigmaX_;
751 return amp_*exp( 1. + 1./( xbar*xbar -1.) );
756 double xbar = (
x-x0_)/sigmaX_;
762 double x0_, sigmaX_, amp_;
784 Gaussian3d(
double x0,
double y0,
double z0,
double sigma_x,
double sigma_y,
double sigma_z,
double amp)
785 : m_x0(x0), m_y0(y0), m_z0(z0), m_sigma_x(sigma_x), m_sigma_y(sigma_y), m_sigma_z(sigma_z), m_amp(amp){
786 assert( m_sigma_x != 0 &&
"sigma_x must be !=0 in Gaussian3d");
787 assert( m_sigma_y != 0 &&
"sigma_y must be !=0 in Gaussian3d");
788 assert( m_sigma_z != 0 &&
"sigma_z must be !=0 in Gaussian3d");
805 exp( -((
x-m_x0)*(
x-m_x0)/2./m_sigma_x/m_sigma_x +
806 (
y-m_y0)*(
y-m_y0)/2./m_sigma_y/m_sigma_y) );
824 exp( -((
x-m_x0)*(
x-m_x0)/2./m_sigma_x/m_sigma_x +
825 (
z-m_z0)*(
z-m_z0)/2./m_sigma_z/m_sigma_z +
826 (
y-m_y0)*(
y-m_y0)/2./m_sigma_y/m_sigma_y) );
829 double m_x0, m_y0, m_z0, m_sigma_x, m_sigma_y, m_sigma_z, m_amp;
848 :m_x0(x0), m_sigma_x(sigma_x), m_amp(amp){
849 assert( m_sigma_x != 0 &&
"sigma_x must be !=0 in GaussianX");
854 return m_amp* exp( -((
x-m_x0)*(
x-m_x0)/2./m_sigma_x/m_sigma_x ));
867 double m_x0, m_sigma_x, m_amp;
886 : m_y0(y0), m_sigma_y(sigma_y), m_amp(amp){
887 assert( m_sigma_y != 0 &&
"sigma_x must be !=0 in GaussianY");
903 return m_amp*exp( -((
y-m_y0)*(
y-m_y0)/2./m_sigma_y/m_sigma_y) );
906 double m_y0, m_sigma_y, m_amp;
925 : m_z0(z0), m_sigma_z(sigma_z), m_amp(amp){
926 assert( m_sigma_z != 0 &&
"sigma_z must be !=0 in GaussianZ");
941 return m_amp*exp( -((
z-m_z0)*(
z-m_z0)/2./m_sigma_z/m_sigma_z) );
958 return m_amp*exp( -((
z-m_z0)*(
z-m_z0)/2./m_sigma_z/m_sigma_z) );
961 double m_z0, m_sigma_z, m_amp;
976 IslandXY(
double lambda,
double eps):lambda_(lambda), eps_(eps){
977 assert( lambda != 0 &&
"Lambda parameter in IslandXY must not be zero!");
987 double operator()(
double x,
double y)
const{
return lambda_*log(cosh(
x/lambda_)+eps_*cos(
y/lambda_));}
1004 SinXSinY(
double amp,
double bamp,
double kx,
double ky):amp_(amp), bamp_(bamp),kx_(kx),ky_(ky){}
1014 double operator()(
double x,
double y)
const{
return bamp_+amp_*sin(
x*kx_)*sin(
y*ky_);}
1016 double amp_,bamp_,kx_,ky_;
1032 CosXCosY(
double amp,
double bamp,
double kx,
double ky):amp_(amp), bamp_(bamp),kx_(kx),ky_(ky){}
1042 double operator()(
double x,
double y)
const{
return bamp_+amp_*cos(
x*kx_)*cos(
y*ky_);}
1044 double amp_,bamp_,kx_,ky_;
1060 SinXCosY(
double amp,
double bamp,
double kx,
double ky):amp_(amp), bamp_(bamp),kx_(kx),ky_(ky){}
1070 double operator()(
double x,
double y)
const{
return bamp_+amp_*sin(
x*kx_)*cos(
y*ky_);}
1072 double amp_,bamp_,kx_,ky_;
1087 SinX(
double amp,
double bamp,
double kx):amp_(amp), bamp_(bamp),kx_(kx){}
1095 double amp_,bamp_,kx_;
1110 SinY(
double amp,
double bamp,
double ky):amp_(amp), bamp_(bamp),ky_(ky){}
1112 double operator()(
double x,
double y)
const{
return bamp_+amp_*sin(
y*ky_);}
1114 double amp_,bamp_,ky_;
1129 CosY(
double amp,
double bamp,
double ky):amp_(amp), bamp_(bamp),ky_(ky){}
1131 double operator()(
double x,
double y)
const{
return bamp_+amp_*cos(
y*ky_);}
1133 double amp_,bamp_,ky_;
1149 double operator()(
double x)
const{
return m_amp/cosh(
x*m_kx)/cosh(
x*m_kx);}
1170 SinProfX(
double amp,
double bamp,
double kx):m_amp(amp), m_bamp(bamp),m_kx(kx){}
1172 double operator()(
double x)
const{
return m_bamp+m_amp*(1.-sin(
x*m_kx));}
1178 double m_amp, m_bamp, m_kx;
1193 ExpProfX(
double amp,
double bamp,
double ln):m_amp(amp),m_bamp(bamp),m_ln(ln){
1194 assert( ln!=0 &&
"ln parameter must be != 0 in ExpProfX!");
1203 double m_amp, m_bamp, m_ln;
1221 m_psimax(psimax), m_alpha(alpha) {
1222 assert( alpha!= 0 &&
"Damping width in GaussianDamping must not be zero");
1227 if( psi > m_psimax + 4.*m_alpha)
return 0.;
1228 if( psi < m_psimax)
return 1.;
1229 return exp( -( psi-m_psimax)*( psi-m_psimax)/2./m_alpha/m_alpha);
1232 double m_psimax, m_alpha;
1251 TanhProfX(
double xb,
double width,
int sign =1,
double bgamp = 0.,
1252 double profamp = 1.) :
1253 xb_(xb),w_(width), s_(sign),bga_(bgamp),profa_(profamp) {
1254 assert( width != 0&&
"Width in TanhProfX must not be zero!");
1259 return profa_*0.5*(1.+s_*tanh((
x-xb_)/w_))+bga_;
1295 x0(xb), a(a), m_s(sign){
1296 assert( a!=0 &&
"PolynomialHeaviside width must not be zero");
1301 if( m_s == -1)
x = 2*x0-
x;
1302 if (
x < x0-a)
return 0;
1303 if (
x > x0+a)
return 1;
1304 return ((16.*a*a*a - 29.*a*a*(
x - x0)
1305 + 20.*a*(
x - x0)*(
x - x0)
1306 - 5.*(
x - x0)*(
x-x0)*(
x-x0))
1307 *(a +
x - x0)*(a +
x - x0)
1308 *(a +
x - x0)*(a +
x - x0))/(32.*a*a*a * a*a*a*a);
1347 m_hl( xl, al, +1), m_hr( xr, ar, -1) {
1348 assert( xl < xr &&
"left boundary must be left of right boundary");
1353 return m_hl(
x)*m_hr(
x);
1385 x0(xb), a(a), m_s(sign){
1386 assert( a!=0 &&
"IPolynomialHeaviside width must not be zero");
1391 if( m_s == -1)
x = 2*x0-
x;
1393 if (
x < x0-a) result = x0;
1394 else if (
x > x0+a) result =
x;
1396 result = x0 + ((35.* a*a*a - 47.* a*a*(
x - x0) + 25.*a*(
x - x0)*(
x-x0)
1397 - 5.*(
x - x0)*(
x-x0)*(
x-x0))
1398 *(a+
x-x0)*(a+
x-x0)*(a+
x-x0)*(a+
x-x0)*(a+
x-x0))
1399 /(256.*a*a*a * a*a*a*a);
1400 if ( m_s == +1)
return result;
1401 return 2*x0 - result;
1437 assert( a!=0 &&
"DPolynomialHeaviside width must not be zero");
1442 if ( (
x < x0-a) || (
x > x0+a))
return 0;
1443 return (35.*(a+
x-x0)*(a+
x-x0)*(a+
x-x0)*(a-
x+x0)*(a-
x+x0)*(a-
x+x0))
1444 /(32.*a*a*a * a*a*a*a);
1483 m_alpha(alpha), m_etac(eta_c), m_s(order), m_n(n) {}
1486 double eta = (double)i/(
double)(m_n-1);
1487 if( m_n == 1) eta = 0.;
1491 return exp( -m_alpha*pow( (eta-m_etac)/(1.-m_etac), 2*m_s));
1495 double m_alpha, m_etac;
1523 Lamb(
double x0,
double y0,
double R,
double U):R_(R), U_(U), x0_(x0), y0_(y0)
1525 gamma_ = 3.83170597020751231561;
1545 double radius = sqrt( (
x-x0_)*(
x-x0_) + (
y-y0_)*(
y-y0_));
1546 double theta = atan2( (
y-y0_),(
x-x0_));
1550 return 2.*lambda_*U_*_j1(lambda_*radius)/j_*cos( theta);
1552 return 2.*lambda_*U_*j1( lambda_*radius)/j_*cos( theta);
1573 double R_, U_, x0_, y0_, lambda_, gamma_, j_;
1609 Vortex(
double x0,
double y0,
unsigned state,
1610 double R,
double u_dipole,
double kz = 0):
1611 x0_(x0), y0_(y0), s_(state), R_(R), u_d( u_dipole), kz_(kz){
1612 g_[0] = 3.831896621;
1613 g_[1] = -3.832353624;
1615 b_[0] = 0.03827327723;
1616 b_[1] = 0.07071067810 ;
1617 b_[2] = 0.07071067810 ;
1638 double r = sqrt( (
x-x0_)*(
x-x0_)+(
y-y0_)*(
y-y0_));
1639 double theta = atan2(
y-y0_,
x-x0_);
1640 double beta = b_[s_];
1641 double norm = 1.2965125;
1645 r *( 1 +beta*beta/g_[s_]/g_[s_] )
1647 - R_* beta*beta/g_[s_]/g_[s_] *_j1(g_[s_]*r/R_)/_j1(g_[s_])
1649 - R_ * beta*beta/g_[s_]/g_[s_] * j1(g_[s_]*r/R_)/ j1(g_[s_])
1652 return u_d * R_* bessk1(beta*r/R_)/bessk1(beta)*cos(theta)/norm;
1679 double bessk1(
double x)
const
1685 ans = (log(x/2.0)*bessi1(x))+(1.0/x)*(1.0+
y*(0.15443144 +
1686 y*(-0.67278579+
y*(-0.18156897+
y*(-0.1919402e-1 +
1687 y*(-0.110404e-2+
y*(-0.4686e-4)))))));
1692 ans = (exp(-x)/sqrt(x))*(1.25331414+
y*(0.23498619 +
1693 y*(-0.3655620e-1+
y*(0.1504268e-1+
y*(-0.780353e-2 +
1694 y*(0.325614e-2+
y*(-0.68245e-3)))))));
1700 double bessi1(
double x)
const
1704 if ((ax=fabs(x)) < 3.75)
1708 ans = ax*(0.5+
y*(0.87890594+
y*(0.51498869+
y*(0.15084934 +
1709 y*(0.2658733e-1+
y*(0.301532e-2+
y*0.32411e-3))))));
1714 ans = 0.2282967e-1+
y*(-0.2895312e-1+
y*(0.1787654e-1 -
1715 y*0.420059e-2)); ans=0.39894228+
y*(-0.3988024e-1+
1716 y*(-0.362018e-2 +
y*(0.163801e-2+
y*(-0.1031555e-1+
y*ans))));
1717 ans *= (exp(ax)/sqrt(ax));
1719 return x < 0.0 ? -ans : ans;
1723 double R_, b_[3], u_d;
1758 BathRZ(
unsigned N_kR,
unsigned N_kZ,
double R_min,
double Z_min,
double gamma,
double L_E,
double amp) :
1759 N_kR_(N_kR), N_kZ_(N_kZ),
1760 R_min_(R_min), Z_min_(Z_min),
1761 gamma_(gamma), L_E_(L_E) , amp_(amp),
1762 kvec( N_kR_*N_kZ_, 0), sqEkvec(kvec), unif1(kvec), unif2(kvec),
1763 normal1(kvec), normal2(kvec), alpha(kvec), theta(kvec)
1765 double N_kR2=(double)(N_kR_*N_kR_);
1766 double N_kZ2=(double)(N_kZ_*N_kZ_);
1767 double N_k= sqrt(N_kR2+N_kZ2);
1769 norm_=sqrt(2./(
double)N_kR_/(
double)N_kZ_);
1770 double tpi=2.*
M_PI, tpi2=tpi*tpi;
1771 double k0= tpi*L_E_/N_k;
1772 double N_kRh = N_kR_/2.;
1773 double N_kZh = N_kZ_/2.;
1775 std::minstd_rand generator;
1776 std::normal_distribution<double> ndistribution( 0.0, 1.0);
1777 std::uniform_real_distribution<double> udistribution(0.0,tpi);
1778 for (
unsigned j=1;j<=N_kZ_;j++)
1780 double kZ2=tpi2*(j-N_kZh)*(j-N_kZh)/(N_kZ2);
1781 for (
unsigned i=1;i<=N_kR_;i++)
1783 double kR2=tpi2*(i-N_kRh)*(i-N_kRh)/(N_kR2);
1784 int z=(j-1)*(N_kR_)+(i-1);
1785 kvec[
z]= sqrt(kR2 + kZ2);
1786 sqEkvec[
z]=pow(kvec[
z]*4.*k0/(kvec[
z]+k0)/(kvec[
z]+k0),gamma_/2.);
1787 unif1[
z]=cos(udistribution(generator));
1788 unif2[
z]=sin(udistribution(generator));
1789 normal1[
z]=ndistribution(generator);
1790 normal2[
z]=ndistribution(generator);
1791 alpha[
z]=sqrt(normal1[
z]*normal1[
z]+normal2[
z]*normal2[
z]);
1792 theta[
z]=atan2(normal2[
z],normal1[
z]);
1822 double f, kappa, RR, ZZ;
1826 for (
unsigned j=0;j<N_kZ_;j++)
1828 for (
unsigned i=0;i<N_kR_;i++)
1831 kappa= RR*unif1[
z]+ZZ*unif2[
z];
1832 f+= sqEkvec[
z]*alpha[
z]*cos(kvec[
z]*kappa+theta[
z]);
1835 return amp_*norm_*f;
1868 for (
unsigned j=0;j<N_kZ_;j++)
1870 for (
unsigned i=0;i<N_kR_;i++)
1872 int z=(j)*(N_kR_)+(i);
1873 kappa= RR*unif1[
z]+ZZ*unif2[
z];
1874 f+= sqEkvec[
z]*alpha[
z]*cos(kvec[
z]*kappa+theta[
z]);
1877 return amp_*norm_*f;
1880 unsigned N_kR_,N_kZ_;
1881 double R_min_, Z_min_;
1882 double gamma_, L_E_;
1885 std::vector<double> kvec;
1886 std::vector<double> sqEkvec;
1887 std::vector<double> unif1, unif2, normal1,normal2,alpha,theta;
1907 Horner2d( std::vector<double> c,
unsigned M,
unsigned N): m_c(c), m_M(M), m_N(N){}
1910 std::vector<double> cx( m_M);
1911 for(
unsigned i=0; i<m_M; i++)
1912 cx[i] = horner( &m_c[i*m_N], m_N,
y);
1913 return horner( &cx[0], m_M,
x);
1916 double horner(
const double * c,
unsigned M,
double x)
const
1919 for(
unsigned i=0; i<M-1; i++)
1923 std::vector<double> m_c;
1932template <
class container = thrust::host_vector<
double> >
1943 binwidth_(g1d_.h()),
1946 for (
unsigned j=0;j<in_.size();j++)
1948 unsigned bin =floor( (in_[j]-g1d_.
x0())/binwidth_ );
1949 bin = std::max(bin,(
unsigned) 0);
1950 bin = std::min(bin,(
unsigned)(g1d_.
size()-1));
1954 unsigned Ampmax = (unsigned)thrust::reduce( count_.begin(), count_.end(),0., thrust::maximum<double>() );
1974 unsigned bin = floor((
x-g1d_.
x0())/binwidth_+0.5);
1975 bin = std::max(bin,(
unsigned) 0);
1976 bin = std::min(bin,(
unsigned)(g1d_.
size()-1));
1982 const std::vector<double> in_;
1991template <
class container = thrust::host_vector<
double> >
2004 binwidthx_(g2d_.hx()),
2005 binwidthy_(g2d_.hy()),
2009 for (
unsigned j=0;j<iny_.size();j++)
2011 unsigned biny =floor((iny_[j]-g2d_.
y0())/binwidthy_) ;
2012 biny = std::max(biny,(
unsigned) 0);
2013 biny = std::min(biny,(
unsigned)(g2d_.
Ny()-1));
2015 unsigned binx =floor((inx_[j]-g2d_.
x0())/binwidthx_) ;
2016 binx = std::max(binx,(
unsigned) 0);
2017 binx = std::min(binx,(
unsigned)(g2d_.
Nx()-1));
2018 count_[biny*g2d_.
Nx()+binx ]+=1.;
2022 unsigned Ampmax = (unsigned)thrust::reduce( count_.begin(), count_.end(),0.,thrust::maximum<double>() );
2037 unsigned binx = floor((
x-g2d_.
x0())/binwidthx_+0.5) ;
2038 binx = std::max(binx,(
unsigned) 0);
2039 binx = std::min(binx,(
unsigned)(g2d_.
Nx()-1));
2040 unsigned biny = floor((
y-g2d_.
y0())/binwidthy_+0.5) ;
2041 biny = std::max(biny,(
unsigned) 0);
2042 biny = std::min(biny,(
unsigned)(g2d_.
Ny()-1));
2043 return count_[biny*g2d_.
Nx()+binx ];
2048 const std::vector<double> inx_,iny_;
2049 double binwidthx_,binwidthy_;
2069 WallDistance( std::vector<double> vertical, std::vector<double> horizontal) :
2070 m_vertical(vertical), m_horizontal( horizontal) {}
2077 m_horizontal({walls.y0(), walls.y1()}){}
2083 std::vector<double> dist( 1, 1e100);
2084 for(
auto v : m_vertical)
2085 dist.push_back(fabs( R-v));
2086 for(
auto h : m_horizontal)
2087 dist.push_back(fabs( Z-h));
2088 return *std::min_element( dist.begin(), dist.end());
2091 std::vector<double> m_vertical;
2092 std::vector<double> m_horizontal;
Function discretization routines.
Some utility functions for the dg::evaluate routines.
#define M_PI
M_PI is non-standard ... so MSVC complains.
Definition functors.h:6
DG_DEVICE T zero(T x, Ts ...xs)
This enum can be used in dg::evaluate.
Definition functions.h:19
void scal(ContainerType &x, value_type alpha)
Definition blas1.h:263
@ backward
backward derivative (cell to the left and current cell)
Definition enums.h:99
@ forward
forward derivative (cell to the right and current cell)
Definition enums.h:98
auto evaluate(Functor &&f, const Topology &g)
Evaluate a function on grid coordinates
Definition evaluation.h:74
#define DG_DEVICE
Expands to __host__ __device__ if compiled with nvcc else is empty.
Definition dg_doc.h:378
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
Definition functors.h:100
DG_DEVICE T operator()(T x) const
Definition functors.h:101
Definition functors.h:121
DG_DEVICE T operator()(T x, T y) const
Definition functors.h:122
Definition functors.h:133
DG_DEVICE T operator()(T x, T y) const
Definition functors.h:134
Definition functors.h:1746
double operator()(double R, double Z, double phi) const
Return the value of the Bath.
Definition functors.h:1862
double operator()(double R, double Z) const
Return the value of the Bath.
Definition functors.h:1820
BathRZ(unsigned N_kR, unsigned N_kZ, double R_min, double Z_min, double gamma, double L_E, double amp)
Functor returning a random field in the RZ-plane or in the first RZ-plane.
Definition functors.h:1758
Definition functors.h:655
double dxx(double x, double y) const
Definition functors.h:692
Cauchy(double x0, double y0, double sigma_x, double sigma_y, double amp)
A blob that drops to zero.
Definition functors.h:665
double dxy(double x, double y) const
Definition functors.h:712
double dx(double x, double y) const
Definition functors.h:686
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:670
double dy(double x, double y) const
Definition functors.h:699
double dyy(double x, double y) const
Definition functors.h:705
bool inside(double x, double y) const
Definition functors.h:677
Definition functors.h:736
bool inside(double x, double y) const
Definition functors.h:754
CauchyX(double x0, double sigma_x, double amp)
A 1D-blob that drops to zero.
Definition functors.h:744
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:748
Definition functors.h:1023
CosXCosY(double amp, double bamp, double kx, double ky)
Construct.
Definition functors.h:1032
DG_DEVICE double operator()(double x, double y) const
Return profile.
Definition functors.h:1042
Definition functors.h:1121
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1131
CosY(double amp, double bamp, double ky)
Construct.
Definition functors.h:1129
The derivative of PolynomialHeaviside approximates delta(x)
Definition functors.h:1425
DG_DEVICE double operator()(double x) const
Definition functors.h:1440
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1447
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1449
DPolynomialHeaviside(double xb, double a, int sign=+1)
Construct with xb, width and sign.
Definition functors.h:1435
Definition functors.h:497
Distance(double x0, double y0)
Definition functors.h:498
DG_DEVICE double operator()(double x, double y)
Definition functors.h:500
DG_DEVICE T operator()(T x) const
Definition functors.h:46
Definition functors.h:1185
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1201
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1199
DG_DEVICE double operator()(double x) const
Definition functors.h:1197
ExpProfX(double amp, double bamp, double ln)
Construct with three coefficients.
Definition functors.h:1193
Definition functors.h:1468
ExponentialFilter(double alpha, double eta_c, unsigned order, unsigned n)
Create exponential filter .
Definition functors.h:1482
double operator()(unsigned i) const
Definition functors.h:1484
Definition functors.h:772
DG_DEVICE double operator()(double x, double y) const
Return a 2d Gaussian.
Definition functors.h:802
DG_DEVICE double operator()(double x, double y, double z) const
Return the value of the Gaussian.
Definition functors.h:821
Gaussian3d(double x0, double y0, double z0, double sigma_x, double sigma_y, double sigma_z, double amp)
Functor returning a Gaussian.
Definition functors.h:784
Definition functors.h:1219
DG_DEVICE double operator()(double psi) const
Definition functors.h:1225
GaussianDamping(double psimax, double alpha)
Definition functors.h:1220
Definition functors.h:589
DG_DEVICE double operator()(double x, double y) const
Return the value of the Gaussian.
Definition functors.h:616
Gaussian(double x0, double y0, double sigma_x, double sigma_y, double amp)
Functor returning a Gaussian.
Definition functors.h:599
DG_DEVICE double operator()(double x, double y, double z) const
Return the value of the Gaussian.
Definition functors.h:634
Definition functors.h:839
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:857
DG_DEVICE double operator()(double x) const
Definition functors.h:852
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:862
GaussianX(double x0, double sigma_x, double amp)
A Gaussian in x.
Definition functors.h:847
Definition functors.h:877
GaussianY(double y0, double sigma_y, double amp)
Functor returning a gaussian.
Definition functors.h:885
DG_DEVICE double operator()(double x, double y) const
Return the value of the gaussian.
Definition functors.h:901
Definition functors.h:916
DG_DEVICE double operator()(double z) const
Return the value of the gaussian.
Definition functors.h:939
GaussianZ(double z0, double sigma_z, double amp)
Functor returning a gaussian.
Definition functors.h:924
DG_DEVICE double operator()(double x, double y, double z) const
Return the value of the gaussian.
Definition functors.h:956
Definition functors.h:468
DG_DEVICE double operator()(double x) const
Definition functors.h:482
Heaviside(double xb, int sign=+1)
Construct with xb and sign.
Definition functors.h:478
Compute a histogram on a 2D grid.
Definition functors.h:1993
Histogram2D(const dg::Grid2d &g2d, const std::vector< double > &inx, const std::vector< double > &iny)
Construct a histogram from number of bins and an input vector.
Definition functors.h:2000
double operator()(double x, double y) const
Access computed histogram.
Definition functors.h:2035
Compute a histogram on a 1D grid.
Definition functors.h:1934
Histogram(const dg::Grid1d &g1d, const std::vector< double > &in)
Construct a histogram from number of bins and an input vector.
Definition functors.h:1940
double binwidth()
get binwidth
Definition functors.h:1964
double operator()(double x) const
Access computed histogram.
Definition functors.h:1972
Definition functors.h:1896
Horner2d()
Initialize 1 coefficient to 1.
Definition functors.h:1898
double operator()(double x, double y) const
Definition functors.h:1908
Horner2d(std::vector< double > c, unsigned M, unsigned N)
Initialize coefficients and dimensions.
Definition functors.h:1907
DG_DEVICE T operator()(T x) const
Definition functors.h:94
The integral of PolynomialHeaviside approximates xH(x)
Definition functors.h:1376
IPolynomialHeaviside(double xb, double a, int sign=+1)
Construct with xb, width and sign.
Definition functors.h:1384
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1405
DG_DEVICE double operator()(double x) const
Definition functors.h:1389
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1407
Definition functors.h:198
bool operator()(T x)
Definition functors.h:202
Definition functors.h:224
bool operator()(T x)
Definition functors.h:234
Definition functors.h:1140
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1151
DG_DEVICE double operator()(double x) const
Definition functors.h:1149
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1153
InvCoshXsq(double amp, double kx)
Construct with two coefficients.
Definition functors.h:1147
DG_DEVICE T operator()(T x) const
Definition functors.h:84
Definition functors.h:406
DG_DEVICE double operator()(double psi) const
Definition functors.h:410
Iris(double psi_min, double psi_max)
Definition functors.h:407
Definition functors.h:969
DG_DEVICE double operator()(double x, double y) const
Return profile.
Definition functors.h:987
IslandXY(double lambda, double eps)
Construct Island.
Definition functors.h:976
DG_DEVICE T operator()(const T &x) const
Definition functors.h:56
Definition functors.h:1514
double enstrophy() const
The total enstrophy of the dipole.
Definition functors.h:1563
Lamb(double x0, double y0, double R, double U)
Functor returning a Lamb-dipole.
Definition functors.h:1523
DG_DEVICE double operator()(double x, double y) const
Return the value of the dipole.
Definition functors.h:1543
double energy() const
The total energy of the dipole.
Definition functors.h:1571
Definition functors.h:512
double operator()(double x)
Definition functors.h:515
Line(double x0, double y0, double x1, double y1)
Definition functors.h:513
Definition functors.h:527
DG_DEVICE double operator()(double x) const
Definition functors.h:536
LinearX(double a, double b)
Construct with two coefficients.
Definition functors.h:534
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:540
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:538
Definition functors.h:549
LinearY(double a, double b)
Construct with two coefficients.
Definition functors.h:556
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:558
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:560
Definition functors.h:569
LinearZ(double a, double b)
Construct with two coefficients.
Definition functors.h:576
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:578
x mod m > 0 ? x mod m : x mod m + m
Definition functors.h:167
MOD(T m)
Construct from modulo.
Definition functors.h:173
DG_DEVICE T operator()(T x) const
Definition functors.h:176
Definition functors.h:256
T operator()(T x1, T x2) const
Definition functors.h:270
PLUS(T value)
Construct.
Definition functors.h:35
DG_DEVICE T operator()(T x) const
Definition functors.h:37
Definition functors.h:152
DG_DEVICE T operator()(T x) const
Definition functors.h:153
Definition functors.h:1285
DG_DEVICE double operator()(double x) const
Definition functors.h:1299
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1313
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1311
PolynomialHeaviside(double xb, double a, int sign=+1)
Construct with xb, width and sign.
Definition functors.h:1294
Definition functors.h:1337
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1356
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1358
DG_DEVICE double operator()(double x) const
Definition functors.h:1351
PolynomialRectangle(double xl, double al, double xr, double ar)
Construct with xb, width and sign.
Definition functors.h:1346
Definition functors.h:447
PsiPupil(double psimax)
Definition functors.h:448
DG_DEVICE double operator()(double psi) const
Definition functors.h:451
Definition functors.h:427
Pupil(double psimax)
Definition functors.h:428
DG_DEVICE double operator()(double psi) const
Definition functors.h:431
DG_DEVICE T operator()(T x) const
Definition functors.h:67
Definition functors.h:114
DG_DEVICE T operator()(T x) const
Definition functors.h:115
Definition functors.h:1162
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1174
SinProfX(double amp, double bamp, double kx)
Construct.
Definition functors.h:1170
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1176
DG_DEVICE double operator()(double x) const
Definition functors.h:1172
Definition functors.h:1051
SinXCosY(double amp, double bamp, double kx, double ky)
Construct.
Definition functors.h:1060
DG_DEVICE double operator()(double x, double y) const
Return profile.
Definition functors.h:1070
Definition functors.h:1079
DG_DEVICE double operator()(double x) const
Definition functors.h:1089
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1091
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1093
SinX(double amp, double bamp, double kx)
Construct.
Definition functors.h:1087
Definition functors.h:995
SinXSinY(double amp, double bamp, double kx, double ky)
Construct.
Definition functors.h:1004
DG_DEVICE double operator()(double x, double y) const
Return profile.
Definition functors.h:1014
Definition functors.h:1102
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1112
SinY(double amp, double bamp, double ky)
Construct.
Definition functors.h:1110
Definition functors.h:350
DG_DEVICE T operator()(T v, T gm, T g0, T gp, T hm, T hp) const
Definition functors.h:354
SlopeLimiter()
Definition functors.h:351
SlopeLimiter(Limiter l)
Definition functors.h:352
Definition functors.h:375
DG_DEVICE T operator()(T v, T gm, T g0, T gp, T hm, T hp) const
Definition functors.h:379
SlopeLimiterProduct(Limiter l)
Definition functors.h:377
SlopeLimiterProduct()
Definition functors.h:376
DG_DEVICE T operator()(T x) const
Definition functors.h:77
Definition functors.h:1240
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1264
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1262
DG_DEVICE double operator()(double x) const
Definition functors.h:1257
TanhProfX(double xb, double width, int sign=1, double bgamp=0., double profamp=1.)
Construct with xb, width and sign.
Definition functors.h:1251
Definition functors.h:313
DG_DEVICE T operator()(T velocity, T backward, T forward) const
Definition functors.h:315
Definition functors.h:330
DG_DEVICE T operator()(T velocity, T backward, T forward) const
Definition functors.h:332
Definition functors.h:296
DG_DEVICE T operator()(T x1, T x2) const
Definition functors.h:298
Definition functors.h:1598
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1636
Vortex(double x0, double y0, unsigned state, double R, double u_dipole, double kz=0)
Definition functors.h:1609
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1672
Shortest Distance to a collection of vertical and horizontal lines.
Definition functors.h:2062
WallDistance(dg::Grid2d walls)
Allocate lines.
Definition functors.h:2076
WallDistance(std::vector< double > vertical, std::vector< double > horizontal)
Allocate lines.
Definition functors.h:2069
double operator()(double R, double Z) const
Distance to closest wall in a box.
Definition functors.h:2081
real_type x0() const
Equivalent to p(0)
Definition grid.h:285
unsigned size() const
The total number of points.
Definition grid.h:532
unsigned Nx() const
Equivalent to N(0)
Definition grid.h:334
real_type y0() const
Equivalent to p(2)
Definition grid.h:291
real_type x1() const
Equivalent to p(1)
Definition grid.h:288
unsigned Ny() const
Equivalent to N(1)
Definition grid.h:337