Discontinuous Galerkin Library
#include "dg/algorithm.h"
Loading...
Searching...
No Matches
functors.h
Go to the documentation of this file.
1#pragma once
2
3#include <cmath>
5#ifndef M_PI
6#define M_PI 3.14159265358979323846
7#endif
8#include <vector>
9#include <random>
10#include <functional>
11#include "blas1.h"
12#include "topology/grid.h"
13#include "topology/evaluation.h"
14#include "topology/functions.h"
18namespace dg
19{
20
23//Everything that is quite basic and simple
24
25
27template <class T = double>
28struct PLUS
29{
35 PLUS( T value): x_(value){}
37 T operator()( T x)const{ return x + x_;}
38 private:
39 T x_;
40};
41
43template< class T = double >
44struct EXP
45{
46 DG_DEVICE T operator() ( T x) const
47 {
48 return exp(x);
49 }
50};
51
53template < class T = double>
54struct LN
55{
56 DG_DEVICE T operator() (const T& x) const
57 {
58 return log(x);
59 }
60
61};
62
64template < class T = double>
65struct SQRT
66{
68 {
69 return sqrt(x);
70 }
71};
72
74struct Square
75{
76 template<class T>
77 DG_DEVICE T operator()( T x) const{ return x*x;}
78};
79
81template < class T = double>
82struct InvSqrt
83{
85 {
86 return 1./sqrt(x);
87 }
88};
89
91template <class T = double>
92struct INVERT
93{
94 DG_DEVICE T operator()( T x)const{ return 1./x;}
95};
96
98template <class T = double>
99struct ABS
100{
101 DG_DEVICE T operator()(T x)const{ return fabs(x);}
102};
103
112template <class T = double>
113struct Sign
114{
115 DG_DEVICE T operator()(T x)const{ return (T(0) < x) - (x < T(0));}
116};
117
119template <class T = double>
120struct AbsMax
121{
122 DG_DEVICE T operator() ( T x, T y) const
123 {
124 T absx = x>0 ? x : -x;
125 T absy = y>0 ? y : -y;
126 return absx > absy ? absx : absy;
127 }
128};
129
131template <class T = double>
132struct AbsMin
133{
134 DG_DEVICE T operator() (T x, T y) const
135 {
136 T absx = x<0 ? -x : x;
137 T absy = y<0 ? -y : y;
138 return absx < absy ? absx : absy;
139 }
140};
141
150template <class T = double>
152{
153 DG_DEVICE T operator()( T x)const{
154 if (x >= 0.0) return x;
155 return 0.0;
156 }
157};
158
165template <class T= double>
166struct MOD
167{
173 MOD( T m): m_m(m){}
174
176 T operator()( T x)const{
177 return (fmod(x,m_m) < 0 ) ? (m_m + fmod(x,m_m)) : fmod(x,m_m);
178 }
179 private:
180 T m_m;
181
182};
183
196template <class T>
198{
199#ifdef __CUDACC__
200 DG_DEVICE bool operator()(T x){ return !isfinite(x);}
201#else
202 bool operator()( T x){ return !std::isfinite(x);}
203#endif
204};
205
222template <class T>
224{
225#ifdef __CUDACC__
226 DG_DEVICE bool operator()(T x){
227 if( !isfinite(x))
228 return true;
229 if( x > 1e100 || x < -1e100)
230 return true;
231 return false;
232 }
233#else
234 bool operator()( T x){
235 if( !std::isfinite(x))
236 return true;
237 if( x > 1e100 || x < -1e100)
238 return true;
239 return false;
240 }
241#endif
242};
243
255struct MinMod
256{
258#ifdef __CUDACC__
259 template < class T>
260 DG_DEVICE T operator()( T x1, T x2) const
261 {
262 if( x1 > 0 && x2 > 0)
263 return min(x1,x2);
264 else if( x1 < 0 && x2 < 0)
265 return max(x1,x2);
266 return 0.;
267 }
268#else
269 template < class T>
270 T operator()( T x1, T x2) const
271 {
272 if( x1 > 0 && x2 > 0)
273 return std::min(x1,x2);
274 else if( x1 < 0 && x2 < 0)
275 return std::max(x1,x2);
276 return 0.;
277 }
278#endif
280 template<class T>
281 DG_DEVICE T operator() ( T x1, T x2, T x3)const
282 {
283 return this-> operator()( this-> operator()( x1, x2), x3);
284 }
285};
286
296{
297 template<class T>
298 DG_DEVICE T operator()( T x1, T x2) const
299 {
300 if( x1*x2 <= 0)
301 return 0.;
302 return 2.*x1*x2/(x1+x2);
303 }
304};
305
312struct Upwind
313{
314 template<class T>
315 DG_DEVICE T operator()( T velocity, T backward, T forward) const{
316 if( velocity >= 0)
317 return backward;
318 else
319 return forward;
320 }
321};
322
330{
331 template<class T>
332 DG_DEVICE T operator()( T velocity, T backward, T forward)const{
333 return velocity*m_up(velocity, backward, forward);
334 }
335 private:
336 Upwind m_up;
337};
338
348template<class Limiter>
350{
352 SlopeLimiter( Limiter l ) : m_l( l){}
353 template<class T>
354 DG_DEVICE T operator()( T v, T gm, T g0, T gp, T hm, T hp ) const{
355 if( v >= 0)
356 return +hm*m_l( g0, gm);
357 else
358 return -hp*m_l( gp, g0);
359 }
360 private:
361 Limiter m_l;
362};
363
373template<class Limiter>
375{
377 SlopeLimiterProduct( Limiter l ) : m_s( l){}
378 template<class T>
379 DG_DEVICE T operator()( T v, T gm, T g0, T gp, T hm, T hp ) const{
380 return v*m_s(v,gm,g0,gp,hm,hp);
381 }
382 private:
384};
386
387
393
396//
397
405struct Iris
406{
407 Iris( double psi_min, double psi_max ):
408 m_psimin(psi_min), m_psimax(psi_max) { }
410 double operator()(double psi)const
411 {
412 if( psi > m_psimax) return 0.;
413 if( psi < m_psimin) return 0.;
414 return 1.;
415 }
416 private:
417 double m_psimin, m_psimax;
418};
426struct Pupil
427{
428 Pupil( double psimax):
429 psimax_(psimax) { }
431 double operator()(double psi)const
432 {
433 if( psi > psimax_) return 0.;
434 return 1.;
435 }
436 private:
437 double psimax_;
438};
447{
448 PsiPupil(double psimax):
449 psimax_(psimax){ }
451 double operator()(double psi)const
452 {
453 if( psi > psimax_) return psimax_;
454 return psi;
455 }
456 private:
457 double psimax_;
458};
468{
469
478 Heaviside( double xb, int sign = +1):
479 m_xb(xb), m_s(sign){ }
480
482 double operator()(double x)const
483 {
484 if( (x < m_xb && m_s == 1) || (x > m_xb && m_s == -1)) return 0.;
485 return 1.;
486 }
487 private:
488 double m_xb;
489 int m_s;
490};
491
492
497{
498 Distance( double x0, double y0): m_x0(x0), m_y0(y0){}
500 double operator()(double x, double y){
501 return sqrt( (x-m_x0)*(x-m_x0) + (y-m_y0)*(y-m_y0));
502 }
503 private:
504 double m_x0, m_y0;
505};
512struct Line{
513 Line(double x0, double y0, double x1, double y1) :
514 m_x0(x0), m_y0(y0), m_x1(x1), m_y1(y1){}
515 double operator()(double x){
516 return m_y1*(x-m_x0)/(m_x1-m_x0) + m_y0*(x-m_x1)/(m_x0-m_x1);
517 }
518 private:
519 double m_x0, m_y0, m_x1, m_y1;
520};
521
527{
534 LinearX( double a, double b):a_(a), b_(b){}
536 double operator()(double x)const{ return a_*x+b_;}
538 double operator()( double x, double y)const{ return this->operator()(x);}
540 double operator()( double x, double y, double z)const{ return this->operator()(x);}
541 private:
542 double a_,b_;
543};
549{
556 LinearY( double a, double b):a_(a), b_(b){}
558 double operator()( double x, double y, double z)const { return a_*y+b_;}
560 double operator()( double x, double y)const{ return a_*y+b_;}
561 private:
562 double a_,b_;
563};
569{
576 LinearZ( double a, double b):a_(a), b_(b){}
578 double operator()( double x, double y, double z)const{ return a_*z+b_;}
579 private:
580 double a_,b_;
581};
589{
599 Gaussian( double x0, double y0, double sigma_x, double sigma_y, double amp)
600 : m_x0(x0), m_y0(y0), m_sigma_x(sigma_x), m_sigma_y(sigma_y), m_amp(amp){
601 assert( m_sigma_x != 0 && "sigma_x must not be 0 in Gaussian");
602 assert( m_sigma_y != 0 && "sigma_y must not be 0 in Gaussian");
603 }
616 double operator()(double x, double y) const
617 {
618 return m_amp*
619 exp( -((x-m_x0)*(x-m_x0)/2./m_sigma_x/m_sigma_x +
620 (y-m_y0)*(y-m_y0)/2./m_sigma_y/m_sigma_y) );
621 }
634 double operator()(double x, double y, double z) const
635 {
636 return this->operator()(x,y);
637 }
638 private:
639 double m_x0, m_y0, m_sigma_x, m_sigma_y, m_amp;
640
641};
642
654struct Cauchy
655{
665 Cauchy( double x0, double y0, double sigma_x, double sigma_y, double amp): x0_(x0), y0_(y0), sigmaX_(sigma_x), sigmaY_(sigma_y), amp_(amp){
666 assert( sigma_x != 0 && "sigma_x must be !=0 in Cauchy");
667 assert( sigma_y != 0 && "sigma_y must be !=0 in Cauchy");
668 }
670 double operator()(double x, double y )const{
671 double xbar = (x-x0_)/sigmaX_;
672 double ybar = (y-y0_)/sigmaY_;
673 if( xbar*xbar + ybar*ybar < 1.)
674 return amp_*exp( 1. + 1./( xbar*xbar + ybar*ybar -1.) );
675 return 0.;
676 }
677 bool inside( double x, double y)const
678 {
679 double xbar = (x-x0_)/sigmaX_;
680 double ybar = (y-y0_)/sigmaY_;
681 if( xbar*xbar + ybar*ybar < 1.)
682 return true;
683 return false;
684 }
685
686 double dx( double x, double y )const{
687 double xbar = (x-x0_)/sigmaX_;
688 double ybar = (y-y0_)/sigmaY_;
689 double temp = sigmaX_*(xbar*xbar + ybar*ybar - 1.);
690 return -2.*(x-x0_)*this->operator()(x,y)/temp/temp;
691 }
692 double dxx( double x, double y)const{
693 double temp = sigmaY_*sigmaY_*(x-x0_)*(x-x0_) + sigmaX_*sigmaX_*((y-y0_)*(y-y0_) - sigmaY_*sigmaY_);
694 double bracket = sigmaX_*sigmaX_*((y-y0_)*(y-y0_)-sigmaY_*sigmaY_)*sigmaX_*sigmaX_*((y-y0_)*(y-y0_)-sigmaY_*sigmaY_)
695 -3.*sigmaY_*sigmaY_*sigmaY_*sigmaY_*(x-x0_)*(x-x0_)*(x-x0_)*(x-x0_)
696 -2.*sigmaY_*sigmaY_*sigmaX_*sigmaX_*(x-x0_)*(x-x0_)*(y-y0_)*(y-y0_);
697 return -2.*sigmaX_*sigmaX_*sigmaY_*sigmaY_*sigmaY_*sigmaY_*this->operator()(x,y)*bracket/temp/temp/temp/temp;
698 }
699 double dy( double x, double y)const{
700 double xbar = (x-x0_)/sigmaX_;
701 double ybar = (y-y0_)/sigmaY_;
702 double temp = sigmaY_*(xbar*xbar + ybar*ybar - 1.);
703 return -2.*(y-y0_)*this->operator()(x,y)/temp/temp;
704 }
705 double dyy( double x, double y)const{
706 double temp = sigmaX_*sigmaX_*(y-y0_)*(y-y0_) + sigmaY_*sigmaY_*((x-x0_)*(x-x0_) - sigmaX_*sigmaX_);
707 double bracket = sigmaY_*sigmaY_*((x-x0_)*(x-x0_)-sigmaX_*sigmaX_)*sigmaY_*sigmaY_*((x-x0_)*(x-x0_)-sigmaX_*sigmaX_)
708 -3.*sigmaX_*sigmaX_*sigmaX_*sigmaX_*(y-y0_)*(y-y0_)*(y-y0_)*(y-y0_)
709 -2.*sigmaX_*sigmaX_*sigmaY_*sigmaY_*(y-y0_)*(y-y0_)*(x-x0_)*(x-x0_);
710 return -2.*sigmaY_*sigmaY_*sigmaX_*sigmaX_*sigmaX_*sigmaX_*this->operator()(x,y)*bracket/temp/temp/temp/temp;
711 }
712 double dxy( double x, double y )const{
713 double xbar = (x-x0_)/sigmaX_;
714 double ybar = (y-y0_)/sigmaY_;
715 double temp = (xbar*xbar + ybar*ybar - 1.);
716 return 8.*xbar*ybar*this->operator()(x,y)/temp/temp/temp/sigmaX_/sigmaY_
717 + 4.*xbar*ybar*this->operator()(x,y)/temp/temp/temp/temp/sigmaX_/sigmaY_
718;
719 }
720 private:
721 double x0_, y0_, sigmaX_, sigmaY_, amp_;
722};
723
736{
744 CauchyX( double x0, double sigma_x, double amp): x0_(x0), sigmaX_(sigma_x), amp_(amp){
745 assert( sigma_x != 0 && "sigma_x must be !=0 in Cauchy");
746 }
748 double operator()(double x, double y )const{
749 double xbar = (x-x0_)/sigmaX_;
750 if( xbar*xbar < 1.)
751 return amp_*exp( 1. + 1./( xbar*xbar -1.) );
752 return 0.;
753 }
754 bool inside( double x, double y)const
755 {
756 double xbar = (x-x0_)/sigmaX_;
757 if( xbar*xbar < 1.)
758 return true;
759 return false;
760 }
761 private:
762 double x0_, sigmaX_, amp_;
763};
764
772{
784 Gaussian3d( double x0, double y0, double z0, double sigma_x, double sigma_y, double sigma_z, double amp)
785 : m_x0(x0), m_y0(y0), m_z0(z0), m_sigma_x(sigma_x), m_sigma_y(sigma_y), m_sigma_z(sigma_z), m_amp(amp){
786 assert( m_sigma_x != 0 && "sigma_x must be !=0 in Gaussian3d");
787 assert( m_sigma_y != 0 && "sigma_y must be !=0 in Gaussian3d");
788 assert( m_sigma_z != 0 && "sigma_z must be !=0 in Gaussian3d");
789 }
802 double operator()(double x, double y) const
803 {
804 return m_amp*
805 exp( -((x-m_x0)*(x-m_x0)/2./m_sigma_x/m_sigma_x +
806 (y-m_y0)*(y-m_y0)/2./m_sigma_y/m_sigma_y) );
807 }
821 double operator()(double x, double y, double z) const
822 {
823 return m_amp*
824 exp( -((x-m_x0)*(x-m_x0)/2./m_sigma_x/m_sigma_x +
825 (z-m_z0)*(z-m_z0)/2./m_sigma_z/m_sigma_z +
826 (y-m_y0)*(y-m_y0)/2./m_sigma_y/m_sigma_y) );
827 }
828 private:
829 double m_x0, m_y0, m_z0, m_sigma_x, m_sigma_y, m_sigma_z, m_amp;
830
831};
839{
847 GaussianX( double x0, double sigma_x, double amp)
848 :m_x0(x0), m_sigma_x(sigma_x), m_amp(amp){
849 assert( m_sigma_x != 0 && "sigma_x must be !=0 in GaussianX");
850 }
852 double operator()(double x) const
853 {
854 return m_amp* exp( -((x-m_x0)*(x-m_x0)/2./m_sigma_x/m_sigma_x ));
855 }
857 double operator()(double x, double y) const
858 {
859 return this->operator()(x);
860 }
862 double operator()(double x, double y, double z) const
863 {
864 return this->operator()(x);
865 }
866 private:
867 double m_x0, m_sigma_x, m_amp;
868
869};
877{
885 GaussianY( double y0, double sigma_y, double amp)
886 : m_y0(y0), m_sigma_y(sigma_y), m_amp(amp){
887 assert( m_sigma_y != 0 && "sigma_x must be !=0 in GaussianY");
888 }
901 double operator()(double x, double y) const
902 {
903 return m_amp*exp( -((y-m_y0)*(y-m_y0)/2./m_sigma_y/m_sigma_y) );
904 }
905 private:
906 double m_y0, m_sigma_y, m_amp;
907
908};
916{
924 GaussianZ( double z0, double sigma_z, double amp)
925 : m_z0(z0), m_sigma_z(sigma_z), m_amp(amp){
926 assert( m_sigma_z != 0 && "sigma_z must be !=0 in GaussianZ");
927 }
939 double operator()( double z) const
940 {
941 return m_amp*exp( -((z-m_z0)*(z-m_z0)/2./m_sigma_z/m_sigma_z) );
942 }
956 double operator()(double x, double y, double z) const
957 {
958 return m_amp*exp( -((z-m_z0)*(z-m_z0)/2./m_sigma_z/m_sigma_z) );
959 }
960 private:
961 double m_z0, m_sigma_z, m_amp;
962
963};
969{
976 IslandXY( double lambda, double eps):lambda_(lambda), eps_(eps){
977 assert( lambda != 0 && "Lambda parameter in IslandXY must not be zero!");
978 }
987 double operator()( double x, double y)const{ return lambda_*log(cosh(x/lambda_)+eps_*cos(y/lambda_));}
988 private:
989 double lambda_,eps_;
990};
995{
1004 SinXSinY( double amp, double bamp, double kx, double ky):amp_(amp), bamp_(bamp),kx_(kx),ky_(ky){}
1013 DG_DEVICE
1014 double operator()( double x, double y)const{ return bamp_+amp_*sin(x*kx_)*sin(y*ky_);}
1015 private:
1016 double amp_,bamp_,kx_,ky_;
1017};
1023{
1032 CosXCosY( double amp, double bamp, double kx, double ky):amp_(amp), bamp_(bamp),kx_(kx),ky_(ky){}
1041 DG_DEVICE
1042 double operator()( double x, double y)const{ return bamp_+amp_*cos(x*kx_)*cos(y*ky_);}
1043 private:
1044 double amp_,bamp_,kx_,ky_;
1045};
1051{
1060 SinXCosY( double amp, double bamp, double kx, double ky):amp_(amp), bamp_(bamp),kx_(kx),ky_(ky){}
1069 DG_DEVICE
1070 double operator()( double x, double y)const{ return bamp_+amp_*sin(x*kx_)*cos(y*ky_);}
1071 private:
1072 double amp_,bamp_,kx_,ky_;
1073};
1078struct SinX
1079{
1087 SinX( double amp, double bamp, double kx):amp_(amp), bamp_(bamp),kx_(kx){}
1088 DG_DEVICE
1089 double operator()( double x)const{ return bamp_+amp_*sin(x*kx_);}
1090 DG_DEVICE
1091 double operator()( double x, double y)const{ return this->operator()(x);}
1092 DG_DEVICE
1093 double operator()( double x, double y, double z)const{ return this->operator()(x);}
1094 private:
1095 double amp_,bamp_,kx_;
1096};
1101struct SinY
1102{
1110 SinY( double amp, double bamp, double ky):amp_(amp), bamp_(bamp),ky_(ky){}
1111 DG_DEVICE
1112 double operator()( double x, double y)const{ return bamp_+amp_*sin(y*ky_);}
1113 private:
1114 double amp_,bamp_,ky_;
1115};
1120struct CosY
1121{
1129 CosY( double amp, double bamp, double ky):amp_(amp), bamp_(bamp),ky_(ky){}
1130 DG_DEVICE
1131 double operator()( double x, double y)const{ return bamp_+amp_*cos(y*ky_);}
1132 private:
1133 double amp_,bamp_,ky_;
1134};
1140{
1147 InvCoshXsq( double amp, double kx):m_amp(amp), m_kx(kx){}
1148 DG_DEVICE
1149 double operator()( double x)const{ return m_amp/cosh(x*m_kx)/cosh(x*m_kx);}
1150 DG_DEVICE
1151 double operator()( double x, double y)const{ return this->operator()(x);}
1152 DG_DEVICE
1153 double operator()( double x, double y, double z)const{ return this->operator()(x);}
1154 private:
1155 double m_amp, m_kx;
1156};
1162{
1170 SinProfX( double amp, double bamp, double kx):m_amp(amp), m_bamp(bamp),m_kx(kx){}
1171 DG_DEVICE
1172 double operator()( double x)const{ return m_bamp+m_amp*(1.-sin(x*m_kx));}
1173 DG_DEVICE
1174 double operator()( double x, double y)const{ return this->operator()(x);}
1175 DG_DEVICE
1176 double operator()( double x, double y, double z)const{ return this->operator()(x);}
1177 private:
1178 double m_amp, m_bamp, m_kx;
1179};
1185{
1193 ExpProfX( double amp, double bamp, double ln):m_amp(amp),m_bamp(bamp),m_ln(ln){
1194 assert( ln!=0 && "ln parameter must be != 0 in ExpProfX!");
1195 }
1196 DG_DEVICE
1197 double operator()( double x)const{ return m_bamp+m_amp*exp(-x/m_ln);}
1198 DG_DEVICE
1199 double operator()( double x, double y)const{ return this->operator()(x);}
1200 DG_DEVICE
1201 double operator()( double x, double y, double z)const{ return this->operator()(x);}
1202 private:
1203 double m_amp, m_bamp, m_ln;
1204};
1205
1206
1219{
1220 GaussianDamping( double psimax, double alpha):
1221 m_psimax(psimax), m_alpha(alpha) {
1222 assert( alpha!= 0 && "Damping width in GaussianDamping must not be zero");
1223 }
1224 DG_DEVICE
1225 double operator()(double psi)const
1226 {
1227 if( psi > m_psimax + 4.*m_alpha) return 0.;
1228 if( psi < m_psimax) return 1.;
1229 return exp( -( psi-m_psimax)*( psi-m_psimax)/2./m_alpha/m_alpha);
1230 }
1231 private:
1232 double m_psimax, m_alpha;
1233};
1251 TanhProfX(double xb, double width, int sign =1,double bgamp = 0.,
1252 double profamp = 1.) :
1253 xb_(xb),w_(width), s_(sign),bga_(bgamp),profa_(profamp) {
1254 assert( width != 0&& "Width in TanhProfX must not be zero!");
1255 }
1256 DG_DEVICE
1257 double operator() (double x)const
1258 {
1259 return profa_*0.5*(1.+s_*tanh((x-xb_)/w_))+bga_;
1260 }
1261 DG_DEVICE
1262 double operator()( double x, double y)const{ return this->operator()(x);}
1263 DG_DEVICE
1264 double operator()( double x, double y, double z)const{ return this->operator()(x);}
1265 private:
1266 double xb_;
1267 double w_;
1268 int s_;
1269 double bga_;
1270 double profa_;
1271};
1272
1294 PolynomialHeaviside(double xb, double a, int sign = +1) :
1295 x0(xb), a(a), m_s(sign){
1296 assert( a!=0 && "PolynomialHeaviside width must not be zero");
1297 }
1298 DG_DEVICE
1299 double operator() (double x)const
1300 {
1301 if( m_s == -1) x = 2*x0-x; //mirror
1302 if ( x < x0-a) return 0;
1303 if ( x > x0+a) return 1;
1304 return ((16.*a*a*a - 29.*a*a*(x - x0)
1305 + 20.*a*(x - x0)*(x - x0)
1306 - 5.*(x - x0)*(x-x0)*(x-x0))
1307 *(a + x - x0)*(a + x - x0)
1308 *(a + x - x0)*(a + x - x0))/(32.*a*a*a * a*a*a*a);
1309 }
1310 DG_DEVICE
1311 double operator()( double x, double y)const{ return this->operator()(x);}
1312 DG_DEVICE
1313 double operator()( double x, double y, double z)const{ return this->operator()(x);}
1314 private:
1315 double x0, a;
1316 int m_s;
1317};
1318
1346 PolynomialRectangle(double xl, double al, double xr, double ar) :
1347 m_hl( xl, al, +1), m_hr( xr, ar, -1) {
1348 assert( xl < xr && "left boundary must be left of right boundary");
1349 }
1350 DG_DEVICE
1351 double operator() (double x)const
1352 {
1353 return m_hl(x)*m_hr(x);
1354 }
1355 DG_DEVICE
1356 double operator()( double x, double y)const{ return this->operator()(x);}
1357 DG_DEVICE
1358 double operator()( double x, double y, double z)const{ return this->operator()(x);}
1359 private:
1360 PolynomialHeaviside m_hl, m_hr;
1361};
1362
1384 IPolynomialHeaviside(double xb, double a, int sign = +1) :
1385 x0(xb), a(a), m_s(sign){
1386 assert( a!=0 && "IPolynomialHeaviside width must not be zero");
1387 }
1388 DG_DEVICE
1389 double operator() (double x)const
1390 {
1391 if( m_s == -1) x = 2*x0-x; //mirror
1392 double result;
1393 if ( x < x0-a) result = x0;
1394 else if ( x > x0+a) result = x;
1395 else
1396 result = x0 + ((35.* a*a*a - 47.* a*a*(x - x0) + 25.*a*(x - x0)*(x-x0)
1397 - 5.*(x - x0)*(x-x0)*(x-x0))
1398 *(a+x-x0)*(a+x-x0)*(a+x-x0)*(a+x-x0)*(a+x-x0))
1399 /(256.*a*a*a * a*a*a*a);
1400 if ( m_s == +1) return result;
1401 return 2*x0 - result;
1402
1403 }
1404 DG_DEVICE
1405 double operator()( double x, double y)const{ return this->operator()(x);}
1406 DG_DEVICE
1407 double operator()( double x, double y, double z)const{ return this->operator()(x);}
1408 private:
1409 double x0, a;
1410 int m_s;
1411};
1412
1435 DPolynomialHeaviside(double xb, double a, int sign = +1) :
1436 x0(xb), a(a){
1437 assert( a!=0 && "DPolynomialHeaviside width must not be zero");
1438 }
1439 DG_DEVICE
1440 double operator() (double x)const
1441 {
1442 if ( (x < x0-a) || (x > x0+a)) return 0;
1443 return (35.*(a+x-x0)*(a+x-x0)*(a+x-x0)*(a-x+x0)*(a-x+x0)*(a-x+x0))
1444 /(32.*a*a*a * a*a*a*a);
1445 }
1446 DG_DEVICE
1447 double operator()( double x, double y)const{ return this->operator()(x);}
1448 DG_DEVICE
1449 double operator()( double x, double y, double z)const{ return this->operator()(x);}
1450 private:
1451 double x0, a;
1452};
1453
1468{
1482 ExponentialFilter( double alpha, double eta_c, unsigned order, unsigned n):
1483 m_alpha(alpha), m_etac(eta_c), m_s(order), m_n(n) {}
1484 double operator()( unsigned i) const
1485 {
1486 double eta = (double)i/(double)(m_n-1);
1487 if( m_n == 1) eta = 0.;
1488 if( eta < m_etac)
1489 return 1.;
1490 if( eta <= 1.)
1491 return exp( -m_alpha*pow( (eta-m_etac)/(1.-m_etac), 2*m_s));
1492 return 0;
1493 }
1494 private:
1495 double m_alpha, m_etac;
1496 unsigned m_s, m_n;
1497};
1498
1513struct Lamb
1514{
1523 Lamb( double x0, double y0, double R, double U):R_(R), U_(U), x0_(x0), y0_(y0)
1524 {
1525 gamma_ = 3.83170597020751231561;
1526 lambda_ = gamma_/R;
1527#ifdef _MSC_VER
1528 j_ = _j0(gamma_);
1529#else
1530 j_ = j0( gamma_);
1531#endif
1532 //std::cout << r_ <<u_<<x0_<<y0_<<lambda_<<gamma_<<j_<<std::endl;
1533 }
1542 DG_DEVICE
1543 double operator() (double x, double y)const
1544 {
1545 double radius = sqrt( (x-x0_)*(x-x0_) + (y-y0_)*(y-y0_));
1546 double theta = atan2( (y-y0_),(x-x0_));
1547
1548 if( radius <= R_)
1549#ifdef _MSC_VER
1550 return 2.*lambda_*U_*_j1(lambda_*radius)/j_*cos( theta);
1551#else
1552 return 2.*lambda_*U_*j1( lambda_*radius)/j_*cos( theta);
1553#endif
1554 return 0;
1555 }
1563 double enstrophy( ) const { return M_PI*U_*U_*gamma_*gamma_;}
1564
1571 double energy() const { return 2.*M_PI*R_*R_*U_*U_;}
1572 private:
1573 double R_, U_, x0_, y0_, lambda_, gamma_, j_;
1574};
1575
1598{
1609 Vortex( double x0, double y0, unsigned state,
1610 double R, double u_dipole, double kz = 0):
1611 x0_(x0), y0_(y0), s_(state), R_(R), u_d( u_dipole), kz_(kz){
1612 g_[0] = 3.831896621;
1613 g_[1] = -3.832353624;
1614 g_[2] = 7.016;
1615 b_[0] = 0.03827327723;
1616 b_[1] = 0.07071067810 ;
1617 b_[2] = 0.07071067810 ;
1618 }
1635 DG_DEVICE
1636 double operator()( double x, double y)const
1637 {
1638 double r = sqrt( (x-x0_)*(x-x0_)+(y-y0_)*(y-y0_));
1639 double theta = atan2( y-y0_, x-x0_);
1640 double beta = b_[s_];
1641 double norm = 1.2965125;
1642
1643 if( r/R_<=1.)
1644 return u_d*(
1645 r *( 1 +beta*beta/g_[s_]/g_[s_] )
1646#ifdef _MSC_VER
1647 - R_* beta*beta/g_[s_]/g_[s_] *_j1(g_[s_]*r/R_)/_j1(g_[s_])
1648#else
1649 - R_ * beta*beta/g_[s_]/g_[s_] * j1(g_[s_]*r/R_)/ j1(g_[s_])
1650#endif
1651 )*cos(theta)/norm;
1652 return u_d * R_* bessk1(beta*r/R_)/bessk1(beta)*cos(theta)/norm;
1653 }
1671 DG_DEVICE
1672 double operator()( double x, double y, double z)const
1673 {
1674 return this->operator()(x,y)*cos(kz_*z);
1675 }
1676 private:
1677 // Returns the modified Bessel function K1(x) for positive real x.
1678 DG_DEVICE
1679 double bessk1(double x)const
1680 {
1681 double y,ans;
1682 if (x <= 2.0)
1683 {
1684 y=x*x/4.0;
1685 ans = (log(x/2.0)*bessi1(x))+(1.0/x)*(1.0+y*(0.15443144 +
1686 y*(-0.67278579+y*(-0.18156897+y*(-0.1919402e-1 +
1687 y*(-0.110404e-2+y*(-0.4686e-4)))))));
1688 }
1689 else
1690 {
1691 y=2.0/x;
1692 ans = (exp(-x)/sqrt(x))*(1.25331414+y*(0.23498619 +
1693 y*(-0.3655620e-1+y*(0.1504268e-1+y*(-0.780353e-2 +
1694 y*(0.325614e-2+y*(-0.68245e-3)))))));
1695 }
1696 return ans;
1697 }
1698 //Returns the modified Bessel function I1(x) for any real x.
1699 DG_DEVICE
1700 double bessi1(double x) const
1701 {
1702 double ax,ans;
1703 double y;
1704 if ((ax=fabs(x)) < 3.75)
1705 {
1706 y=x/3.75;
1707 y*=y;
1708 ans = ax*(0.5+y*(0.87890594+y*(0.51498869+y*(0.15084934 +
1709 y*(0.2658733e-1+y*(0.301532e-2+y*0.32411e-3))))));
1710 }
1711 else
1712 {
1713 y=3.75/ax;
1714 ans = 0.2282967e-1+y*(-0.2895312e-1+y*(0.1787654e-1 -
1715 y*0.420059e-2)); ans=0.39894228+y*(-0.3988024e-1+
1716 y*(-0.362018e-2 +y*(0.163801e-2+y*(-0.1031555e-1+y*ans))));
1717 ans *= (exp(ax)/sqrt(ax));
1718 }
1719 return x < 0.0 ? -ans : ans;
1720 }
1721 double x0_, y0_;
1722 unsigned s_;
1723 double R_, b_[3], u_d;
1724 double g_[3];
1725 double kz_;
1726};
1727
1746struct BathRZ{
1758 BathRZ( unsigned N_kR, unsigned N_kZ, double R_min, double Z_min, double gamma, double L_E, double amp) :
1759 N_kR_(N_kR), N_kZ_(N_kZ),
1760 R_min_(R_min), Z_min_(Z_min),
1761 gamma_(gamma), L_E_(L_E) , amp_(amp),
1762 kvec( N_kR_*N_kZ_, 0), sqEkvec(kvec), unif1(kvec), unif2(kvec),
1763 normal1(kvec), normal2(kvec), alpha(kvec), theta(kvec)
1764 {
1765 double N_kR2=(double)(N_kR_*N_kR_);
1766 double N_kZ2=(double)(N_kZ_*N_kZ_);
1767 double N_k= sqrt(N_kR2+N_kZ2);
1768
1769 norm_=sqrt(2./(double)N_kR_/(double)N_kZ_);
1770 double tpi=2.*M_PI, tpi2=tpi*tpi;
1771 double k0= tpi*L_E_/N_k;
1772 double N_kRh = N_kR_/2.;
1773 double N_kZh = N_kZ_/2.;
1774
1775 std::minstd_rand generator;
1776 std::normal_distribution<double> ndistribution( 0.0, 1.0); // ( mean, stddev)
1777 std::uniform_real_distribution<double> udistribution(0.0,tpi); //between [0 and 2pi)
1778 for (unsigned j=1;j<=N_kZ_;j++)
1779 {
1780 double kZ2=tpi2*(j-N_kZh)*(j-N_kZh)/(N_kZ2);
1781 for (unsigned i=1;i<=N_kR_;i++)
1782 {
1783 double kR2=tpi2*(i-N_kRh)*(i-N_kRh)/(N_kR2);
1784 int z=(j-1)*(N_kR_)+(i-1);
1785 kvec[z]= sqrt(kR2 + kZ2); //radial k number
1786 sqEkvec[z]=pow(kvec[z]*4.*k0/(kvec[z]+k0)/(kvec[z]+k0),gamma_/2.); //Energie in k space with max at 1.
1787 unif1[z]=cos(udistribution(generator));
1788 unif2[z]=sin(udistribution(generator));
1789 normal1[z]=ndistribution(generator);
1790 normal2[z]=ndistribution(generator);
1791 alpha[z]=sqrt(normal1[z]*normal1[z]+normal2[z]*normal2[z]);
1792 theta[z]=atan2(normal2[z],normal1[z]);
1793 }
1794 }
1795
1796 }
1820 double operator()(double R, double Z)const
1821 {
1822 double f, kappa, RR, ZZ;
1823 RR=R-R_min_;
1824 ZZ=Z-Z_min_;
1825 f=0.;
1826 for (unsigned j=0;j<N_kZ_;j++)
1827 {
1828 for (unsigned i=0;i<N_kR_;i++)
1829 {
1830 int z=j*N_kR_+i;
1831 kappa= RR*unif1[z]+ZZ*unif2[z];
1832 f+= sqEkvec[z]*alpha[z]*cos(kvec[z]*kappa+theta[z]);
1833 }
1834 }
1835 return amp_*norm_*f;
1836 }
1862 double operator()(double R, double Z, double phi)const {
1863 double f, kappa;
1864 double RR, ZZ;
1865 RR=R-R_min_;
1866 ZZ=Z-Z_min_;
1867 f=0;
1868 for (unsigned j=0;j<N_kZ_;j++)
1869 {
1870 for (unsigned i=0;i<N_kR_;i++)
1871 {
1872 int z=(j)*(N_kR_)+(i);
1873 kappa= RR*unif1[z]+ZZ*unif2[z];
1874 f+= sqEkvec[z]*alpha[z]*cos(kvec[z]*kappa+theta[z]);
1875 }
1876 }
1877 return amp_*norm_*f;
1878 }
1879 private:
1880 unsigned N_kR_,N_kZ_;
1881 double R_min_, Z_min_;
1882 double gamma_, L_E_;
1883 double amp_;
1884 double norm_;
1885 std::vector<double> kvec;
1886 std::vector<double> sqEkvec;
1887 std::vector<double> unif1, unif2, normal1,normal2,alpha,theta;
1888};
1889
1896{
1898 Horner2d(): m_c( 1, 1), m_M(1), m_N(1){}
1899
1907 Horner2d( std::vector<double> c, unsigned M, unsigned N): m_c(c), m_M(M), m_N(N){}
1908 double operator()( double x, double y) const
1909 {
1910 std::vector<double> cx( m_M);
1911 for( unsigned i=0; i<m_M; i++)
1912 cx[i] = horner( &m_c[i*m_N], m_N, y);
1913 return horner( &cx[0], m_M, x);
1914 }
1915 private:
1916 double horner( const double * c, unsigned M, double x) const
1917 {
1918 double b = c[M-1];
1919 for( unsigned i=0; i<M-1; i++)
1920 b = c[M-2-i] + b*x;
1921 return b;
1922 }
1923 std::vector<double> m_c;
1924 unsigned m_M, m_N;
1925};
1926
1927
1932template <class container = thrust::host_vector<double> >
1934{
1940 Histogram(const dg::Grid1d& g1d, const std::vector<double>& in) :
1941 g1d_(g1d),
1942 in_(in),
1943 binwidth_(g1d_.h()),
1944 count_(dg::evaluate(dg::zero,g1d_))
1945 {
1946 for (unsigned j=0;j<in_.size();j++)
1947 {
1948 unsigned bin =floor( (in_[j]-g1d_.x0())/binwidth_ );
1949 bin = std::max(bin,(unsigned) 0);
1950 bin = std::min(bin,(unsigned)(g1d_.size()-1));
1951 count_[bin ]+=1.;
1952 }
1953 //Normalize
1954 unsigned Ampmax = (unsigned)thrust::reduce( count_.begin(), count_.end(),0., thrust::maximum<double>() );
1955 dg::blas1::scal(count_,1./Ampmax);
1956
1957 }
1958
1964 double binwidth() {return binwidth_;}
1972 double operator()(double x)const
1973 {
1974 unsigned bin = floor((x-g1d_.x0())/binwidth_+0.5);
1975 bin = std::max(bin,(unsigned) 0);
1976 bin = std::min(bin,(unsigned)(g1d_.size()-1));
1977 return count_[bin];
1978 }
1979
1980 private:
1981 dg::Grid1d g1d_;
1982 const std::vector<double> in_;
1983 double binwidth_;
1984 container count_;
1985};
1986
1991template <class container = thrust::host_vector<double> >
1993{
2000 Histogram2D(const dg::Grid2d& g2d, const std::vector<double>& inx,const std::vector<double>& iny) :
2001 g2d_(g2d),
2002 inx_(inx),
2003 iny_(iny),
2004 binwidthx_(g2d_.hx()),
2005 binwidthy_(g2d_.hy()),
2006 count_(dg::evaluate(dg::zero,g2d_))
2007 {
2008
2009 for (unsigned j=0;j<iny_.size();j++)
2010 {
2011 unsigned biny =floor((iny_[j]-g2d_.y0())/binwidthy_) ;
2012 biny = std::max(biny,(unsigned) 0);
2013 biny = std::min(biny,(unsigned)(g2d_.Ny()-1));
2014
2015 unsigned binx =floor((inx_[j]-g2d_.x0())/binwidthx_) ;
2016 binx = std::max(binx,(unsigned) 0);
2017 binx = std::min(binx,(unsigned)(g2d_.Nx()-1));
2018 count_[biny*g2d_.Nx()+binx ]+=1.;
2019
2020 }
2021 //Normalize
2022 unsigned Ampmax = (unsigned)thrust::reduce( count_.begin(), count_.end(),0.,thrust::maximum<double>() );
2023 dg::blas1::scal(count_, 1./Ampmax);
2024
2025 }
2026
2035 double operator()(double x, double y)const
2036 {
2037 unsigned binx = floor((x-g2d_.x0())/binwidthx_+0.5) ;
2038 binx = std::max(binx,(unsigned) 0);
2039 binx = std::min(binx,(unsigned)(g2d_.Nx()-1));
2040 unsigned biny = floor((y-g2d_.y0())/binwidthy_+0.5) ;
2041 biny = std::max(biny,(unsigned) 0);
2042 biny = std::min(biny,(unsigned)(g2d_.Ny()-1));
2043 return count_[biny*g2d_.Nx()+binx ];
2044
2045 }
2046 private:
2047 dg::Grid2d g2d_;
2048 const std::vector<double> inx_,iny_;
2049 double binwidthx_,binwidthy_;
2050 container count_;
2051};
2052
2053
2054
2062{
2069 WallDistance( std::vector<double> vertical, std::vector<double> horizontal) :
2070 m_vertical(vertical), m_horizontal( horizontal) {}
2076 WallDistance( dg::Grid2d walls) : m_vertical({walls.x0(), walls.x1()}),
2077 m_horizontal({walls.y0(), walls.y1()}){}
2081 double operator() (double R, double Z) const
2082 {
2083 std::vector<double> dist( 1, 1e100); //fill in at least one (large) number in case vectors are empty)
2084 for( auto v : m_vertical)
2085 dist.push_back(fabs( R-v));
2086 for( auto h : m_horizontal)
2087 dist.push_back(fabs( Z-h));
2088 return *std::min_element( dist.begin(), dist.end());
2089 }
2090 private:
2091 std::vector<double> m_vertical;
2092 std::vector<double> m_horizontal;
2093};
2094
2095
2097} //namespace dg
2098
Function discretization routines.
Some utility functions for the dg::evaluate routines.
#define M_PI
M_PI is non-standard ... so MSVC complains.
Definition functors.h:6
base topology classes
DG_DEVICE T zero(T x, Ts ...xs)
This enum can be used in dg::evaluate.
Definition functions.h:19
void scal(ContainerType &x, value_type alpha)
Definition blas1.h:263
@ z
z direction
@ backward
backward derivative (cell to the left and current cell)
Definition enums.h:99
@ forward
forward derivative (cell to the right and current cell)
Definition enums.h:98
@ y
y direction
@ x
x direction
auto evaluate(Functor &&f, const Topology &g)
Evaluate a function on grid coordinates
Definition evaluation.h:74
#define DG_DEVICE
Expands to __host__ __device__ if compiled with nvcc else is empty.
Definition dg_doc.h:378
This is the namespace for all functions and classes defined and used by the discontinuous Galerkin li...
Definition functors.h:100
DG_DEVICE T operator()(T x) const
Definition functors.h:101
Definition functors.h:121
DG_DEVICE T operator()(T x, T y) const
Definition functors.h:122
Definition functors.h:133
DG_DEVICE T operator()(T x, T y) const
Definition functors.h:134
Definition functors.h:1746
double operator()(double R, double Z, double phi) const
Return the value of the Bath.
Definition functors.h:1862
double operator()(double R, double Z) const
Return the value of the Bath.
Definition functors.h:1820
BathRZ(unsigned N_kR, unsigned N_kZ, double R_min, double Z_min, double gamma, double L_E, double amp)
Functor returning a random field in the RZ-plane or in the first RZ-plane.
Definition functors.h:1758
Definition functors.h:655
double dxx(double x, double y) const
Definition functors.h:692
Cauchy(double x0, double y0, double sigma_x, double sigma_y, double amp)
A blob that drops to zero.
Definition functors.h:665
double dxy(double x, double y) const
Definition functors.h:712
double dx(double x, double y) const
Definition functors.h:686
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:670
double dy(double x, double y) const
Definition functors.h:699
double dyy(double x, double y) const
Definition functors.h:705
bool inside(double x, double y) const
Definition functors.h:677
Definition functors.h:736
bool inside(double x, double y) const
Definition functors.h:754
CauchyX(double x0, double sigma_x, double amp)
A 1D-blob that drops to zero.
Definition functors.h:744
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:748
Definition functors.h:1023
CosXCosY(double amp, double bamp, double kx, double ky)
Construct.
Definition functors.h:1032
DG_DEVICE double operator()(double x, double y) const
Return profile.
Definition functors.h:1042
Definition functors.h:1121
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1131
CosY(double amp, double bamp, double ky)
Construct.
Definition functors.h:1129
The derivative of PolynomialHeaviside approximates delta(x)
Definition functors.h:1425
DG_DEVICE double operator()(double x) const
Definition functors.h:1440
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1447
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1449
DPolynomialHeaviside(double xb, double a, int sign=+1)
Construct with xb, width and sign.
Definition functors.h:1435
Definition functors.h:497
Distance(double x0, double y0)
Definition functors.h:498
DG_DEVICE double operator()(double x, double y)
Definition functors.h:500
Definition functors.h:45
DG_DEVICE T operator()(T x) const
Definition functors.h:46
Definition functors.h:1185
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1201
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1199
DG_DEVICE double operator()(double x) const
Definition functors.h:1197
ExpProfX(double amp, double bamp, double ln)
Construct with three coefficients.
Definition functors.h:1193
Definition functors.h:1468
ExponentialFilter(double alpha, double eta_c, unsigned order, unsigned n)
Create exponential filter .
Definition functors.h:1482
double operator()(unsigned i) const
Definition functors.h:1484
Definition functors.h:772
DG_DEVICE double operator()(double x, double y) const
Return a 2d Gaussian.
Definition functors.h:802
DG_DEVICE double operator()(double x, double y, double z) const
Return the value of the Gaussian.
Definition functors.h:821
Gaussian3d(double x0, double y0, double z0, double sigma_x, double sigma_y, double sigma_z, double amp)
Functor returning a Gaussian.
Definition functors.h:784
Definition functors.h:1219
DG_DEVICE double operator()(double psi) const
Definition functors.h:1225
GaussianDamping(double psimax, double alpha)
Definition functors.h:1220
Definition functors.h:589
DG_DEVICE double operator()(double x, double y) const
Return the value of the Gaussian.
Definition functors.h:616
Gaussian(double x0, double y0, double sigma_x, double sigma_y, double amp)
Functor returning a Gaussian.
Definition functors.h:599
DG_DEVICE double operator()(double x, double y, double z) const
Return the value of the Gaussian.
Definition functors.h:634
Definition functors.h:839
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:857
DG_DEVICE double operator()(double x) const
Definition functors.h:852
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:862
GaussianX(double x0, double sigma_x, double amp)
A Gaussian in x.
Definition functors.h:847
Definition functors.h:877
GaussianY(double y0, double sigma_y, double amp)
Functor returning a gaussian.
Definition functors.h:885
DG_DEVICE double operator()(double x, double y) const
Return the value of the gaussian.
Definition functors.h:901
Definition functors.h:916
DG_DEVICE double operator()(double z) const
Return the value of the gaussian.
Definition functors.h:939
GaussianZ(double z0, double sigma_z, double amp)
Functor returning a gaussian.
Definition functors.h:924
DG_DEVICE double operator()(double x, double y, double z) const
Return the value of the gaussian.
Definition functors.h:956
Definition functors.h:468
DG_DEVICE double operator()(double x) const
Definition functors.h:482
Heaviside(double xb, int sign=+1)
Construct with xb and sign.
Definition functors.h:478
Compute a histogram on a 2D grid.
Definition functors.h:1993
Histogram2D(const dg::Grid2d &g2d, const std::vector< double > &inx, const std::vector< double > &iny)
Construct a histogram from number of bins and an input vector.
Definition functors.h:2000
double operator()(double x, double y) const
Access computed histogram.
Definition functors.h:2035
Compute a histogram on a 1D grid.
Definition functors.h:1934
Histogram(const dg::Grid1d &g1d, const std::vector< double > &in)
Construct a histogram from number of bins and an input vector.
Definition functors.h:1940
double binwidth()
get binwidth
Definition functors.h:1964
double operator()(double x) const
Access computed histogram.
Definition functors.h:1972
Definition functors.h:1896
Horner2d()
Initialize 1 coefficient to 1.
Definition functors.h:1898
double operator()(double x, double y) const
Definition functors.h:1908
Horner2d(std::vector< double > c, unsigned M, unsigned N)
Initialize coefficients and dimensions.
Definition functors.h:1907
Definition functors.h:93
DG_DEVICE T operator()(T x) const
Definition functors.h:94
The integral of PolynomialHeaviside approximates xH(x)
Definition functors.h:1376
IPolynomialHeaviside(double xb, double a, int sign=+1)
Construct with xb, width and sign.
Definition functors.h:1384
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1405
DG_DEVICE double operator()(double x) const
Definition functors.h:1389
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1407
Definition functors.h:198
bool operator()(T x)
Definition functors.h:202
Definition functors.h:224
bool operator()(T x)
Definition functors.h:234
Definition functors.h:1140
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1151
DG_DEVICE double operator()(double x) const
Definition functors.h:1149
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1153
InvCoshXsq(double amp, double kx)
Construct with two coefficients.
Definition functors.h:1147
Definition functors.h:83
DG_DEVICE T operator()(T x) const
Definition functors.h:84
Definition functors.h:406
DG_DEVICE double operator()(double psi) const
Definition functors.h:410
Iris(double psi_min, double psi_max)
Definition functors.h:407
Definition functors.h:969
DG_DEVICE double operator()(double x, double y) const
Return profile.
Definition functors.h:987
IslandXY(double lambda, double eps)
Construct Island.
Definition functors.h:976
Definition functors.h:55
DG_DEVICE T operator()(const T &x) const
Definition functors.h:56
Definition functors.h:1514
double enstrophy() const
The total enstrophy of the dipole.
Definition functors.h:1563
Lamb(double x0, double y0, double R, double U)
Functor returning a Lamb-dipole.
Definition functors.h:1523
DG_DEVICE double operator()(double x, double y) const
Return the value of the dipole.
Definition functors.h:1543
double energy() const
The total energy of the dipole.
Definition functors.h:1571
Definition functors.h:512
double operator()(double x)
Definition functors.h:515
Line(double x0, double y0, double x1, double y1)
Definition functors.h:513
Definition functors.h:527
DG_DEVICE double operator()(double x) const
Definition functors.h:536
LinearX(double a, double b)
Construct with two coefficients.
Definition functors.h:534
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:540
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:538
Definition functors.h:549
LinearY(double a, double b)
Construct with two coefficients.
Definition functors.h:556
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:558
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:560
Definition functors.h:569
LinearZ(double a, double b)
Construct with two coefficients.
Definition functors.h:576
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:578
x mod m > 0 ? x mod m : x mod m + m
Definition functors.h:167
MOD(T m)
Construct from modulo.
Definition functors.h:173
DG_DEVICE T operator()(T x) const
Definition functors.h:176
Definition functors.h:256
T operator()(T x1, T x2) const
Definition functors.h:270
Definition functors.h:29
PLUS(T value)
Construct.
Definition functors.h:35
DG_DEVICE T operator()(T x) const
Definition functors.h:37
Definition functors.h:152
DG_DEVICE T operator()(T x) const
Definition functors.h:153
Definition functors.h:1285
DG_DEVICE double operator()(double x) const
Definition functors.h:1299
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1313
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1311
PolynomialHeaviside(double xb, double a, int sign=+1)
Construct with xb, width and sign.
Definition functors.h:1294
Definition functors.h:1337
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1356
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1358
DG_DEVICE double operator()(double x) const
Definition functors.h:1351
PolynomialRectangle(double xl, double al, double xr, double ar)
Construct with xb, width and sign.
Definition functors.h:1346
Definition functors.h:447
PsiPupil(double psimax)
Definition functors.h:448
DG_DEVICE double operator()(double psi) const
Definition functors.h:451
Definition functors.h:427
Pupil(double psimax)
Definition functors.h:428
DG_DEVICE double operator()(double psi) const
Definition functors.h:431
Definition functors.h:66
DG_DEVICE T operator()(T x) const
Definition functors.h:67
Definition functors.h:114
DG_DEVICE T operator()(T x) const
Definition functors.h:115
Definition functors.h:1162
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1174
SinProfX(double amp, double bamp, double kx)
Construct.
Definition functors.h:1170
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1176
DG_DEVICE double operator()(double x) const
Definition functors.h:1172
Definition functors.h:1051
SinXCosY(double amp, double bamp, double kx, double ky)
Construct.
Definition functors.h:1060
DG_DEVICE double operator()(double x, double y) const
Return profile.
Definition functors.h:1070
Definition functors.h:1079
DG_DEVICE double operator()(double x) const
Definition functors.h:1089
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1091
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1093
SinX(double amp, double bamp, double kx)
Construct.
Definition functors.h:1087
Definition functors.h:995
SinXSinY(double amp, double bamp, double kx, double ky)
Construct.
Definition functors.h:1004
DG_DEVICE double operator()(double x, double y) const
Return profile.
Definition functors.h:1014
Definition functors.h:1102
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1112
SinY(double amp, double bamp, double ky)
Construct.
Definition functors.h:1110
Definition functors.h:350
DG_DEVICE T operator()(T v, T gm, T g0, T gp, T hm, T hp) const
Definition functors.h:354
SlopeLimiter()
Definition functors.h:351
SlopeLimiter(Limiter l)
Definition functors.h:352
Definition functors.h:375
DG_DEVICE T operator()(T v, T gm, T g0, T gp, T hm, T hp) const
Definition functors.h:379
SlopeLimiterProduct(Limiter l)
Definition functors.h:377
SlopeLimiterProduct()
Definition functors.h:376
Definition functors.h:75
DG_DEVICE T operator()(T x) const
Definition functors.h:77
Definition functors.h:1240
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1264
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1262
DG_DEVICE double operator()(double x) const
Definition functors.h:1257
TanhProfX(double xb, double width, int sign=1, double bgamp=0., double profamp=1.)
Construct with xb, width and sign.
Definition functors.h:1251
Definition functors.h:313
DG_DEVICE T operator()(T velocity, T backward, T forward) const
Definition functors.h:315
Definition functors.h:330
DG_DEVICE T operator()(T velocity, T backward, T forward) const
Definition functors.h:332
Definition functors.h:296
DG_DEVICE T operator()(T x1, T x2) const
Definition functors.h:298
Definition functors.h:1598
DG_DEVICE double operator()(double x, double y) const
Definition functors.h:1636
Vortex(double x0, double y0, unsigned state, double R, double u_dipole, double kz=0)
Definition functors.h:1609
DG_DEVICE double operator()(double x, double y, double z) const
Definition functors.h:1672
Shortest Distance to a collection of vertical and horizontal lines.
Definition functors.h:2062
WallDistance(dg::Grid2d walls)
Allocate lines.
Definition functors.h:2076
WallDistance(std::vector< double > vertical, std::vector< double > horizontal)
Allocate lines.
Definition functors.h:2069
double operator()(double R, double Z) const
Distance to closest wall in a box.
Definition functors.h:2081
real_type x0() const
Equivalent to p(0)
Definition grid.h:285
unsigned size() const
The total number of points.
Definition grid.h:532
unsigned Nx() const
Equivalent to N(0)
Definition grid.h:334
real_type y0() const
Equivalent to p(2)
Definition grid.h:291
real_type x1() const
Equivalent to p(1)
Definition grid.h:288
unsigned Ny() const
Equivalent to N(1)
Definition grid.h:337