Discontinuous Galerkin Library
#include "dg/algorithm.h"

\( f(x,y) = \begin{cases} Ae^{1 + \left(\frac{(x-x_0)^2}{\sigma_x^2} - 1\right)^{-1}} \text{ if } \frac{(x-x_0)^2}{\sigma_x^2} < 1\\ 0 \text{ else} \end{cases} \) More...

Public Member Functions

 CauchyX (double x0, double sigma_x, double amp)
 A 1D-blob that drops to zero. More...
 
DG_DEVICE double operator() (double x, double y) const
 
bool inside (double x, double y) const
 

Detailed Description

\( f(x,y) = \begin{cases} Ae^{1 + \left(\frac{(x-x_0)^2}{\sigma_x^2} - 1\right)^{-1}} \text{ if } \frac{(x-x_0)^2}{\sigma_x^2} < 1\\ 0 \text{ else} \end{cases} \)

A bump that drops to zero and is infinitely continuously differentiable

Constructor & Destructor Documentation

◆ CauchyX()

dg::CauchyX::CauchyX ( double  x0,
double  sigma_x,
double  amp 
)
inline

A 1D-blob that drops to zero.

Parameters
x0x-center-coordinate
sigma_xradius in x (must be !=0)
ampAmplitude

Member Function Documentation

◆ inside()

bool dg::CauchyX::inside ( double  x,
double  y 
) const
inline

◆ operator()()

DG_DEVICE double dg::CauchyX::operator() ( double  x,
double  y 
) const
inline

The documentation for this struct was generated from the following file: