\( f(x,y) = \begin{cases} Ae^{1 + \left(\frac{(x-x_0)^2}{\sigma_x^2} - 1\right)^{-1}} \text{ if } \frac{(x-x_0)^2}{\sigma_x^2} < 1\\ 0 \text{ else} \end{cases} \)
More...
\( f(x,y) = \begin{cases} Ae^{1 + \left(\frac{(x-x_0)^2}{\sigma_x^2} - 1\right)^{-1}} \text{ if } \frac{(x-x_0)^2}{\sigma_x^2} < 1\\ 0 \text{ else} \end{cases} \)
A bump that drops to zero and is infinitely continuously differentiable
◆ CauchyX()
dg::CauchyX::CauchyX |
( |
double |
x0, |
|
|
double |
sigma_x, |
|
|
double |
amp |
|
) |
| |
|
inline |
A 1D-blob that drops to zero.
- Parameters
-
x0 | x-center-coordinate |
sigma_x | radius in x (must be !=0) |
amp | Amplitude |
◆ inside()
bool dg::CauchyX::inside |
( |
double |
x, |
|
|
double |
y |
|
) |
| const |
|
inline |
◆ operator()()
DG_DEVICE double dg::CauchyX::operator() |
( |
double |
x, |
|
|
double |
y |
|
) |
| const |
|
inline |
The documentation for this struct was generated from the following file: