\( f(x,y,z) = Ae^{-\left(\frac{(x-x_0)^2}{2\sigma_x^2} + \frac{(y-y_0)^2}{2\sigma_y^2} + \frac{(z-z_0)^2}{2\sigma_z^2}\right)} \)
More...
\( f(x,y,z) = Ae^{-\left(\frac{(x-x_0)^2}{2\sigma_x^2} + \frac{(y-y_0)^2}{2\sigma_y^2} + \frac{(z-z_0)^2}{2\sigma_z^2}\right)} \)
◆ Gaussian3d()
dg::Gaussian3d::Gaussian3d |
( |
double |
x0, |
|
|
double |
y0, |
|
|
double |
z0, |
|
|
double |
sigma_x, |
|
|
double |
sigma_y, |
|
|
double |
sigma_z, |
|
|
double |
amp |
|
) |
| |
|
inline |
Functor returning a Gaussian.
- Parameters
-
x0 | x-center-coordinate |
y0 | y-center-coordinate |
z0 | z-center-coordinate |
sigma_x | x - variance (must be !=0) |
sigma_y | y - variance (must be !=0) |
sigma_z | z - variance (must be !=0) |
amp | Amplitude |
◆ operator()() [1/2]
DG_DEVICE double dg::Gaussian3d::operator() |
( |
double |
x, |
|
|
double |
y |
|
) |
| const |
|
inline |
Return a 2d Gaussian.
\[ f(x,y) = Ae^{-(\frac{(x-x_0)^2}{2\sigma_x^2} + \frac{(y-y_0)^2}{2\sigma_y^2})} \]
- Parameters
-
x | x - coordinate |
y | y - coordinate |
- Returns
- gaussian
◆ operator()() [2/2]
DG_DEVICE double dg::Gaussian3d::operator() |
( |
double |
x, |
|
|
double |
y, |
|
|
double |
z |
|
) |
| const |
|
inline |
Return the value of the Gaussian.
\[ f(x,y) = Ae^{-(\frac{(x-x_0)^2}{2\sigma_x^2} + \frac{(y-y_0)^2}{2\sigma_y^2}+\frac{(z-z_0)^2}{2\sigma_z^2})} \]
- Parameters
-
x | x - coordinate |
y | y - coordinate |
z | z - coordinate |
- Returns
- gaussian
The documentation for this struct was generated from the following file: