Discontinuous Galerkin Library
#include "dg/algorithm.h"
|
\( f(x,y) = \begin{cases} 2\lambda U J_1(\lambda r) / J_0(\gamma)\cos(\theta) \text{ for } r<R \\ 0 \text{ else} \end{cases} \) More...
Public Member Functions | |
Lamb (double x0, double y0, double R, double U) | |
Functor returning a Lamb-dipole. More... | |
DG_DEVICE double | operator() (double x, double y) const |
Return the value of the dipole. More... | |
double | enstrophy () const |
The total enstrophy of the dipole. More... | |
double | energy () const |
The total energy of the dipole. More... | |
\( f(x,y) = \begin{cases} 2\lambda U J_1(\lambda r) / J_0(\gamma)\cos(\theta) \text{ for } r<R \\ 0 \text{ else} \end{cases} \)
with \( r = \sqrt{(x-x_0)^2 + (y-y_0)^2}\), \( \theta = \arctan_2( (y-y_), (x-x_0))\), \(J_0, J_1\) are Bessel functions of the first kind of order 0 and 1 and \(\lambda = \gamma/R\) with \( \gamma = 3.83170597020751231561\) This is the Lamb dipole
|
inline |
Functor returning a Lamb-dipole.
x0 | x-center-coordinate |
y0 | y-center-coordinate |
R | radius of the dipole |
U | speed of the dipole |
|
inline |
The total energy of the dipole.
Analytic formula. True for periodic and dirichlet boundary conditions.
|
inline |
The total enstrophy of the dipole.
Analytic formula. True for periodic and dirichlet boundary conditions.
|
inline |