Discontinuous Galerkin Library
#include "dg/algorithm.h"

\( f(x,y) = \begin{cases} 2\lambda U J_1(\lambda r) / J_0(\gamma)\cos(\theta) \text{ for } r<R \\ 0 \text{ else} \end{cases} \) More...

Public Member Functions

 Lamb (double x0, double y0, double R, double U)
 Functor returning a Lamb-dipole. More...
 
DG_DEVICE double operator() (double x, double y) const
 Return the value of the dipole. More...
 
double enstrophy () const
 The total enstrophy of the dipole. More...
 
double energy () const
 The total energy of the dipole. More...
 

Detailed Description

\( f(x,y) = \begin{cases} 2\lambda U J_1(\lambda r) / J_0(\gamma)\cos(\theta) \text{ for } r<R \\ 0 \text{ else} \end{cases} \)

with \( r = \sqrt{(x-x_0)^2 + (y-y_0)^2}\), \( \theta = \arctan_2( (y-y_), (x-x_0))\), \(J_0, J_1\) are Bessel functions of the first kind of order 0 and 1 and \(\lambda = \gamma/R\) with \( \gamma = 3.83170597020751231561\) This is the Lamb dipole

Constructor & Destructor Documentation

◆ Lamb()

dg::Lamb::Lamb ( double  x0,
double  y0,
double  R,
double  U 
)
inline

Functor returning a Lamb-dipole.

Parameters
x0x-center-coordinate
y0y-center-coordinate
Rradius of the dipole
Uspeed of the dipole

Member Function Documentation

◆ energy()

double dg::Lamb::energy ( ) const
inline

The total energy of the dipole.

Analytic formula. True for periodic and dirichlet boundary conditions.

Returns
energy \( 2\pi R^2U^2\)

◆ enstrophy()

double dg::Lamb::enstrophy ( ) const
inline

The total enstrophy of the dipole.

Analytic formula. True for periodic and dirichlet boundary conditions.

Returns
enstrophy \( \pi U^2\gamma^2\)

◆ operator()()

DG_DEVICE double dg::Lamb::operator() ( double  x,
double  y 
) const
inline

Return the value of the dipole.

Parameters
xx - coordinate
yy - coordinate
Returns
Lamb

The documentation for this struct was generated from the following file: