\(f(x,y) =\begin{cases} \frac{u_d}{1.2965125} \left( r\left(1+\frac{\beta_i^2}{g_i^2}\right) - R \frac{\beta_i^2}{g_i^2} \frac{J_1(g_ir/R)}{J_1(g_i)}\right)\cos(\theta) \text{ if } r < R \\ \frac{u_d}{1.2965125} R \frac{K_1(\beta_i {r}/{R})}{K_1(\beta)} \cos(\theta) \text{ else } \end{cases} \)
More...
|
| Vortex (double x0, double y0, unsigned state, double R, double u_dipole, double kz=0) |
|
DG_DEVICE double | operator() (double x, double y) const |
| \(f(x,y) =\begin{cases} \frac{u_d}{1.2965125} \left( r\left(1+\frac{\beta_i^2}{g_i^2}\right) - R \frac{\beta_i^2}{g_i^2} \frac{J_1(g_ir/R)}{J_1(g_i)}\right)\cos(\theta) \text{ if } r < R \\ \frac{u_d}{1.2965125} R \frac{K_1(\beta_i {r}/{R})}{K_1(\beta)} \cos(\theta) \text{ else } \end{cases} \) More...
|
|
DG_DEVICE double | operator() (double x, double y, double z) const |
| \(f(x,y,z) =\cos(k_z z)\begin{cases} \frac{u_d}{1.2965125} \left( r\left(1+\frac{\beta_i^2}{g_i^2}\right) - R \frac{\beta_i^2}{g_i^2} \frac{J_1(g_ir/R)}{J_1(g_i)}\right)\cos(\theta) \text{ if } r < R \\ \frac{u_d}{1.2965125} R \frac{K_1(\beta_i {r}/{R})}{K_1(\beta)} \cos(\theta) \text{ else } \end{cases} \) More...
|
|
\(f(x,y) =\begin{cases} \frac{u_d}{1.2965125} \left( r\left(1+\frac{\beta_i^2}{g_i^2}\right) - R \frac{\beta_i^2}{g_i^2} \frac{J_1(g_ir/R)}{J_1(g_i)}\right)\cos(\theta) \text{ if } r < R \\ \frac{u_d}{1.2965125} R \frac{K_1(\beta_i {r}/{R})}{K_1(\beta)} \cos(\theta) \text{ else } \end{cases} \)
Return a 2d vortex function where \( i\in \{0,1,2\}\) is the mode number and r and \(\theta\) are poloidal coordinates with \( r = \sqrt{(x-x_0)^2 + (y-y_0)^2}\), \( \theta = \arctan_2( (y-y_), (x-x_0))\), \( g_0 = 3.831896621 \), \( g_1 = -3.832353624 \), \( g_2 = 7.016\), \( \beta_0 = 0.03827327723\), \( \beta_1 = 0.07071067810 \), \( \beta_2 = 0.07071067810 \) \( K_1\) is the modified and \( J_1\) the Bessel function
DG_DEVICE double dg::Vortex::operator() |
( |
double |
x, |
|
|
double |
y |
|
) |
| const |
|
inline |
\(f(x,y) =\begin{cases} \frac{u_d}{1.2965125} \left( r\left(1+\frac{\beta_i^2}{g_i^2}\right) - R \frac{\beta_i^2}{g_i^2} \frac{J_1(g_ir/R)}{J_1(g_i)}\right)\cos(\theta) \text{ if } r < R \\ \frac{u_d}{1.2965125} R \frac{K_1(\beta_i {r}/{R})}{K_1(\beta)} \cos(\theta) \text{ else } \end{cases} \)
Evaluate the vortex where \( i\in \{0,1,2\}\) is the mode number and r and \(\theta\) are poloidal coordinates
- Parameters
-
- Returns
- the above function value
DG_DEVICE double dg::Vortex::operator() |
( |
double |
x, |
|
|
double |
y, |
|
|
double |
z |
|
) |
| const |
|
inline |
\(f(x,y,z) =\cos(k_z z)\begin{cases} \frac{u_d}{1.2965125} \left( r\left(1+\frac{\beta_i^2}{g_i^2}\right) - R \frac{\beta_i^2}{g_i^2} \frac{J_1(g_ir/R)}{J_1(g_i)}\right)\cos(\theta) \text{ if } r < R \\ \frac{u_d}{1.2965125} R \frac{K_1(\beta_i {r}/{R})}{K_1(\beta)} \cos(\theta) \text{ else } \end{cases} \)
Evaluate the vortex modulated by a sine wave in z where \( i\in \{0,1,2\}\) is the mode number and r and \(\theta\) are poloidal coordinates
- Parameters
-
- Returns
- the above function value