Extension: Geometries
#include "dg/geometries/geometries.h"
|
▼Ndg | |
Nblas1 | |
Nblas2 | |
Ncreate | |
►Ngeo | |
►Ncircular | |
CPsip | |
CPsipR | |
CPsipZ | |
►Nguenter | Contains the Guenter type flux functions |
CIpol | |
CIpolR | |
CIpolZ | |
CPsip | |
CPsipR | |
CPsipRR | |
CPsipRZ | |
CPsipZ | |
CPsipZZ | |
►Nmod | A modification flux function |
CPsip | \( \psi_{mod} := \begin{cases} H(\psi_p(R,Z))\text{ for } P(R,Z) \\ \psi_p(R,Z) \text { else } \end{cases} \) |
CPsipR | |
CPsipRR | |
CPsipRZ | |
CPsipZ | |
CPsipZZ | |
CSetCompose | \( f( f_1(R,Z) , f_2(R,Z)) \) |
CSetIntersection | \( f_1 f_2 \equiv f_1 \cap f_2\) |
CSetNot | \( 1-f \equiv \bar f\) |
CSetUnion | \( f_1 + f_2 - f_1 f_2 \equiv f_1 \cup f_2\) |
►Npolynomial | A polynomial approximation type flux function |
CParameters | Constructs and display geometric parameters for the polynomial fields |
CPsip | \( \psi_p(R,Z) = R_0P_{\psi}\Bigg\{ \sum_i \sum_j c_{i*N+j} \bar R^i \bar Z^j \Bigg\} \) |
CPsipR | |
CPsipRR | |
CPsipRZ | |
CPsipZ | |
CPsipZZ | |
►Nsolovev | Contains the solovev state type flux function |
CIpol | |
CIpolR | |
CIpolZ | |
CParameters | Constructs and display geometric parameters for the solovev and taylor fields |
CPsip | |
CPsipR | |
CPsipRR | |
CPsipRZ | |
CPsipZ | |
CPsipZZ | |
►Ntaylor | Contains the Cerfon Taylor state type flux functions (using boost) |
CIpol | |
CIpolR | |
CIpolZ | |
CPsip | |
CPsipR | |
CPsipRR | |
CPsipRZ | |
CPsipZ | |
CPsipZZ | |
Ntoroidal | |
Nx | |
CaCylindricalFunctor | Represent functions written in cylindrical coordinates that are independent of the angle phi serving as both 2d and 3d functions |
CaRealGenerator2d | The abstract generator base class |
CaRealGeneratorX2d | The abstract generator base class |
CBFieldP | \( B^\varphi = R_0I/R^2\) |
CBFieldR | \( B^R = R_0\psi_Z /R\) |
CBFieldT | \( B^{\theta} = B^R\partial_R\theta + B^Z\partial_Z\theta\) |
CBFieldZ | \( B^Z = -R_0\psi_R /R\) |
CBHatP | \( \hat b^\varphi = B^\varphi/|B|\) |
CBHatPR | \( \partial_R \hat b^\varphi\) |
CBHatPZ | \( \partial_Z \hat b^\varphi\) |
CBHatR | \( b^R = B^R/|B|\) |
CBHatRR | \( \partial_R b^R\) |
CBHatRZ | \( \partial_Z b^R\) |
CBHatZ | \( b^Z = B^Z/|B|\) |
CBHatZR | \( \partial_R b^Z\) |
CBHatZZ | \( \partial_Z b^Z\) |
CBmodule | \( |B| = R_0\sqrt{I^2+(\nabla\psi)^2}/R \) |
CBR | \( \frac{\partial |B| }{ \partial R} \) |
CBZ | \( \frac{\partial |B| }{ \partial Z} \) |
CConstant | \( f(x,y) = c\) |
CCurvatureKappaR | Approximate \( \mathcal{K}^{R}_{\vec{\kappa}}=0 \) |
CCurvatureKappaZ | Approximate \( \mathcal{K}^{Z}_{\vec{\kappa}} \) |
CCurvatureNablaBR | Approximate \( \mathcal{K}^{R}_{\nabla B} \) |
CCurvatureNablaBZ | Approximate \( \mathcal{K}^{Z}_{\nabla B} \) |
CCylindricalFunctorsLvl1 | This struct bundles a function and its first derivatives |
CCylindricalFunctorsLvl2 | This struct bundles a function and its first and second derivatives |
CCylindricalSymmTensorLvl1 | |
CCylindricalVectorLvl0 | |
CCylindricalVectorLvl1 | This struct bundles a vector field and its divergence |
CDivb | \( \nabla \cdot \vec b \) |
CDivCurvatureKappa | Approximate \( \vec{\nabla}\cdot \mathcal{K}_{\vec{\kappa}} \) |
CDivCurvatureNablaB | Approximate \( \vec{\nabla}\cdot \mathcal{K}_{\nabla B} \) |
CDivLiseikinX | The x-component of the divergence of the Liseikin monitor metric |
CDivLiseikinY | The y-component of the divergence of the Liseikin monitor metric |
CDivVVP | \( \nabla\cdot\left( \frac{ \hat b }{\hat b^\varphi}\right)\) |
CDS | Class for the evaluation of parallel derivatives |
CDSPGenerator | A transformed field grid generator |
CFieldaligned | Create and manage interpolation matrices from fieldline integration |
CFluxGenerator | A symmetry flux generator |
CFluxSurfaceAverage | Flux surface average (differential volume average) over quantity \( \langle f\rangle(\psi_0) = \frac{1}{A} \int dR dZ \delta(\psi_p(R,Z)-\psi_0) f(R,Z)H(R,Z) \) |
CFluxSurfaceIntegral | Flux surface integral of the form \( \int dR dZ f(R,Z) \delta(\psi_p(R,Z)-\psi_0) g(R,Z) \) |
CFluxVolumeIntegral | Flux volume integral of the form \( \int dR dZ f(R,Z) \Theta(\psi_p(R,Z)-\psi_0) g(R,Z) \) |
CGradLnB | \( \nabla_\parallel \ln{(B)} \) |
CHector | The High PrEcision Conformal grid generaTOR |
CHoo | Inertia factor \( \mathcal I_0 = B^2/(R_0^2|\nabla\psi_p|^2)\) |
CInvB | \( |B|^{-1} = R/R_0\sqrt{I^2+(\nabla\psi)^2} \) |
CLaplacePsip | \( \Delta\psi_p = \psi_R/R + \psi_{RR}+\psi_{ZZ} \) |
CLiseikin_XX | The xx-component of the Liseikin monitor metric |
CLiseikin_XY | The xy-component of the Liseikin monitor metric |
CLiseikin_YY | The yy-component of the Liseikin monitor metric |
CLnB | \( \ln{|B|} \) |
CLogPolarGenerator | Log Polar coordinates (conformal) |
CMagneticFieldParameters | Meta-data about the magnetic field in particular the flux function |
CNablaPsiInv | A weight function for the Hector algorithm |
CNablaPsiInvX | Derivative of the weight function |
CNablaPsiInvY | Derivative of the weight function |
CPeriodify | This function uses the dg::Grid2d::shift member to extend another function beyond the grid boundaries |
CPolarGenerator | Polar coordinates |
CRealCurvilinearGrid2d | A two-dimensional grid based on curvilinear coordinates |
CRealCurvilinearGridX2d | A two-dimensional grid based on curvilinear coordinates |
CRealCurvilinearMPIGrid2d | A two-dimensional MPI grid based on curvilinear coordinates |
CRealCurvilinearProductGrid3d | A 2x1 curvilinear product space grid |
CRealCurvilinearProductGridX3d | A three-dimensional grid based on curvilinear coordinates |
CRealCurvilinearProductMPIGrid3d | A 2x1 curvilinear product space MPI grid |
CRealCurvilinearRefinedGridX2d | A two-dimensional grid based on curvilinear coordinates |
CRealCurvilinearRefinedProductGridX3d | A three-dimensional grid based on curvilinear coordinates |
CRealCylindricalFunctor | Inject both 2d and 3d operator() to a 2d functor |
CRhoP | |
CRibeiro | A two-dimensional grid based on "almost-conformal" coordinates by Ribeiro and Scott 2010 |
CRibeiroFluxGenerator | Same as the Ribeiro class just but uses psi as a flux label directly |
CRibeiroX | A two-dimensional grid based on "almost-conformal" coordinates by Ribeiro and Scott 2010 |
CSafetyFactor | Evaluation of the safety factor q based on direct integration of \( q(\psi_0) = \frac{1}{2\pi} \int d\Theta \frac{B^\varphi}{B^\Theta} \) |
CSafetyFactorAverage | Class for the evaluation of the safety factor q based on a flux-surface integral \( q(\psi_0) = \frac{1}{2\pi} \int dRdZ \frac{I(\psi_p)}{R} \delta(\psi_p - \psi_0)H(R,Z) \) |
CScalarProduct | Return scalar product of two vector fields \( v_0w_0 + v_1w_1 + v_2w_2\) |
CSeparatrixOrthogonal | Choose points on separatrix and construct grid from there |
CSeparatrixOrthogonalAdaptor | An Adaptor to use SeparatrixOrthogonal as aGenerator2d instead of aGeneratorX2d |
CSimpleOrthogonal | Generate a simple orthogonal grid |
CSquareNorm | Return norm of scalar product of two vector fields \( \sqrt{v_0w_0 + v_1w_1 + v_2w_2}\) |
CTokamakMagneticField | A tokamak field as given by R0, Psi and Ipol plus Meta-data like shape and equilibrium |
CTopology1d | Helper class for construction |
CTrueCurvatureKappaP | True \( \mathcal{K}^\varphi_{\vec{\kappa}} \) |
CTrueCurvatureKappaR | True \( \mathcal{K}^R_{\vec{\kappa}} \) |
CTrueCurvatureKappaZ | True \( \mathcal{K}^Z_{\vec{\kappa}} \) |
CTrueCurvatureNablaBP | True \( \mathcal{K}^{\varphi}_{\nabla B} \) |
CTrueCurvatureNablaBR | True \( \mathcal{K}^{R}_{\nabla B} \) |
CTrueCurvatureNablaBZ | True \( \mathcal{K}^{Z}_{\nabla B} \) |
CTrueDivCurvatureKappa | True \( \vec{\nabla}\cdot \mathcal{K}_{\vec{\kappa}} \) |
CTrueDivCurvatureNablaB | True \( \vec{\nabla}\cdot \mathcal{K}_{\nabla B} \) |
CWallDirection | Determine if poloidal field points towards or away from the nearest wall |
CWallFieldlineCoordinate | Normalized coordinate relative to wall along fieldline in phi or s coordinate |
CWallFieldlineDistance | Distance to wall along fieldline in phi or s coordinate |
CZCutter | \( f(R,Z)= \begin{cases} 0 \text{ if } Z < Z_X \\ 1 \text{ else } \end{cases} \) |
Ntensor | |
Nx |