|
Extension: Geometries
#include "dg/geometries/geometries.h"
|
Public Member Functions | |
| CylindricalSymmTensorLvl1 () | |
| Initialize with the identity tensor. | |
| CylindricalSymmTensorLvl1 (CylindricalFunctor chi_xx, CylindricalFunctor chi_xy, CylindricalFunctor chi_yy, CylindricalFunctor divChiX, CylindricalFunctor divChiY) | |
| Copy given functors. | |
| void | reset (CylindricalFunctor chi_xx, CylindricalFunctor chi_xy, CylindricalFunctor chi_yy, CylindricalFunctor divChiX, CylindricalFunctor divChiY) |
| replace with given functors | |
| const CylindricalFunctor & | xx () const |
| xy component \( \chi^{xx}\) | |
| const CylindricalFunctor & | xy () const |
| xy component \( \chi^{xy}\) | |
| const CylindricalFunctor & | yy () const |
| yy component \( \chi^{yy}\) | |
| const CylindricalFunctor & | divX () const |
| \( \partial_x \chi^{xx} + \partial_y\chi^{yx}\) is the x-component of the divergence of the tensor \( \chi\) | |
| const CylindricalFunctor & | divY () const |
| \( \partial_x \chi^{xy} + \partial_y\chi^{yy}\) is the y-component of the divergence of the tensor \( \chi \) | |
A symmetric 2d tensor field and its divergence
|
inline |
Initialize with the identity tensor.
|
inline |
Copy given functors.
let's assume the tensor is called \( \chi \) (chi)
| chi_xx | contravariant xx component \( \chi^{xx}\) |
| chi_xy | contravariant xy component \( \chi^{xy}\) |
| chi_yy | contravariant yy component \( \chi^{yy}\) |
| divChiX | \( \partial_x \chi^{xx} + \partial_y\chi^{yx}\) is the x-component of the divergence of the tensor \( \chi\) |
| divChiY | \( \partial_x \chi^{xy} + \partial_y\chi^{yy}\) is the y-component of the divergence of the tensor \( \chi \) |
|
inline |
\( \partial_x \chi^{xx} + \partial_y\chi^{yx}\) is the x-component of the divergence of the tensor \( \chi\)
|
inline |
\( \partial_x \chi^{xy} + \partial_y\chi^{yy}\) is the y-component of the divergence of the tensor \( \chi \)
|
inline |
replace with given functors
|
inline |
xy component \( \chi^{xx}\)
|
inline |
xy component \( \chi^{xy}\)
|
inline |
yy component \( \chi^{yy}\)