Extension: Geometries
#include "dg/geometries/geometries.h"
Loading...
Searching...
No Matches
dg::geo::RibeiroFluxGenerator Struct Reference

Same as the Ribeiro class but uses \( \zeta = f_0 (\psi_p - \psi_0)\) as a flux label directly. More...

Inheritance diagram for dg::geo::RibeiroFluxGenerator:
[legend]

Public Member Functions

 RibeiroFluxGenerator (const CylindricalFunctorsLvl2 &psi, double psi_0, double psi_1, double x0, double y0, int mode=0, bool verbose=false)
 Construct a flux aligned grid generator.
 
virtual RibeiroFluxGeneratorclone () const
 Abstract clone method that returns a copy on the heap.
 
- Public Member Functions inherited from dg::geo::aRealGenerator2d< real_type >
real_type width () const
 length in \( \zeta\) of the computational space
 
real_type height () const
 length in \( \eta\) of the computational space
 
bool isOrthogonal () const
 sparsity pattern for metric
 
void generate (const thrust::host_vector< real_type > &zeta1d, const thrust::host_vector< real_type > &eta1d, thrust::host_vector< real_type > &x, thrust::host_vector< real_type > &y, thrust::host_vector< real_type > &zetaX, thrust::host_vector< real_type > &zetaY, thrust::host_vector< real_type > &etaX, thrust::host_vector< real_type > &etaY) const
 Generate grid points and elements of the Jacobian.
 
virtual ~aRealGenerator2d ()
 

Additional Inherited Members

- Protected Member Functions inherited from dg::geo::aRealGenerator2d< real_type >
 aRealGenerator2d ()
 empty
 
 aRealGenerator2d (const aRealGenerator2d &)
 empty
 
aRealGenerator2doperator= (const aRealGenerator2d &)
 return *this
 

Detailed Description

Same as the Ribeiro class but uses \( \zeta = f_0 (\psi_p - \psi_0)\) as a flux label directly.

The radial coordinate is given by \( \zeta = f_0 (\psi_p - \psi_0)\).

The poloidal coordinate lines are given by

\begin{align} \frac{d R}{d \eta} &= \frac{ 1}{f(\psi_p)(\nabla\psi_p)^2} \frac{\partial \psi_p}{\partial Z} \\ \frac{d Z}{d \eta} &= -\frac{ 1}{f(\psi_p)(\nabla\psi_p)^2} \frac{\partial \psi_p}{\partial R} \end{align}

, where \( f(\psi_p)\) is the normalisation constant that makes the poloidal \( \eta\) coordinate go from 0 to \(2\pi\).

When an "equalarc" adaption is chosen then the integration is changed to

\begin{align} \frac{d R}{d \eta} &= \frac{ 1}{f(\psi_p)|\nabla\psi_p|} \frac{\partial \psi_p}{\partial Z} \\ \frac{d Z}{d \eta} &= -\frac{ 1}{f(\psi_p)|\nabla\psi_p|} \frac{\partial \psi_p}{\partial R} \end{align}

,

std::unique_ptr<dg::geo::aGenerator2d> generator;
//create the magnetic field
js["magnetic_field"]["params"]);
//create a grid generator
std::string type = js["grid"]["generator"]["type"].asString();
int mode = 0;
if( type != "dsp")
mode = js["grid"]["generator"]["mode"].asInt();
std::cout << "Constructing "<<type<<" grid ... \n";
if( type == "flux")
generator = std::make_unique<dg::geo::FluxGenerator>( mag.get_psip(),
mag.get_ipol(), psi_0, psi_1, mag.R0(), 0., mode, false);
else if( type == "orthogonal")
{
double psi_init = js["grid"]["generator"]["firstline"].asDouble();
if( mode == 0 || mode == 1)
generator = std::make_unique<dg::geo::SimpleOrthogonal>(
mag.get_psip(), psi_0, psi_1, mag.R0(), 0., psi_init, mode);
if( mode > 1)
{
generator = std::make_unique<dg::geo::SimpleOrthogonal>(
mag.get_psip(), lc, psi_0, psi_1, mag.R0(), 0., psi_init,
mode%2);
}
}
else if( type == "separatrix-orthogonal")
{
double RX = mag.R0()-1.1*mag.params().triangularity()*mag.params().a();
double ZX = -1.1*mag.params().elongation()*mag.params().a();
dg::geo::findXpoint( mag.get_psip(), RX, ZX);
//dg::geo::CylindricalSymmTensorLvl1 monitor_chi;
double fx = js["grid"]["generator"]["fx"].asDouble();
generator = std::make_unique<dg::geo::SeparatrixOrthogonalAdaptor>(
mag.get_psip(), monitor_chi, psi_0, RX, ZX, mag.R0(), 0., mode, false, fx);
//psi_1 = -fx/(1.-fx)*psi_0;
}
else if ( type == "dsp")
{
double boxscaleRm = js["grid"][ "scaleR"].get( 0u, 1.05).asDouble();
double boxscaleRp = js["grid"][ "scaleR"].get( 1u, 1.05).asDouble();
double boxscaleZm = js["grid"][ "scaleZ"].get( 0u, 1.05).asDouble();
double boxscaleZp = js["grid"][ "scaleZ"].get( 1u, 1.05).asDouble();
const double Rmin=mag.R0()-boxscaleRm*mag.params().a();
const double Zmin=-boxscaleZm*mag.params().a();
const double Rmax=mag.R0()+boxscaleRp*mag.params().a();
const double Zmax=boxscaleZp*mag.params().a();
generator = std::make_unique<dg::geo::DSPGenerator>( mag,
Rmin, Rmax, Zmin, Zmax, 2.*M_PI/(double)Nz);
}
else if( type == "ribeiro-flux")
generator = std::make_unique<dg::geo::RibeiroFluxGenerator>( mag.get_psip(),
psi_0, psi_1, mag.R0(), 0., mode, false);
else if( type == "ribeiro")
generator = std::make_unique<dg::geo::Ribeiro>( mag.get_psip(),
psi_0, psi_1, mag.R0(), 0., mode, false);

Constructor & Destructor Documentation

◆ RibeiroFluxGenerator()

dg::geo::RibeiroFluxGenerator::RibeiroFluxGenerator ( const CylindricalFunctorsLvl2 & psi,
double psi_0,
double psi_1,
double x0,
double y0,
int mode = 0,
bool verbose = false )
inline

Construct a flux aligned grid generator.

Parameters
psi\( \psi(x,y)\) the flux function and its derivatives in Cartesian coordinates (x,y)
psi_0first boundary
psi_1second boundary
x0a point in the inside of the domain bounded by psi_0 (shouldn't be the O-point)
y0a point in the inside of the domain bounded by psi_0 (shouldn't be the O-point)
modeThis parameter indicates the adaption type used to create the grid: 0 is no adaption, 1 is an equalarc adaption
verboseif true the integrators will write additional information to std::cout

Member Function Documentation

◆ clone()

virtual RibeiroFluxGenerator * dg::geo::RibeiroFluxGenerator::clone ( ) const
inlinevirtual

Abstract clone method that returns a copy on the heap.

Returns
a copy of *this on the heap

Implements dg::geo::aRealGenerator2d< real_type >.


The documentation for this struct was generated from the following file: