Extension: Geometries
#include "dg/geometries/geometries.h"
Loading...
Searching...
No Matches
dg::geo::SimpleOrthogonal Struct Reference

Generate a simple orthogonal grid. More...

Inheritance diagram for dg::geo::SimpleOrthogonal:
[legend]

Public Member Functions

 SimpleOrthogonal (const CylindricalFunctorsLvl2 &psi, double psi_0, double psi_1, double x0, double y0, double psi_firstline, int mode=0)
 Construct a simple orthogonal grid.
 
 SimpleOrthogonal (const CylindricalFunctorsLvl2 &psi, const CylindricalSymmTensorLvl1 &chi, double psi_0, double psi_1, double x0, double y0, double psi_firstline, int mode=0)
 Construct a simple orthogonal grid.
 
double f0 () const
 The grid constant.
 
virtual SimpleOrthogonalclone () const override final
 Abstract clone method that returns a copy on the heap.
 
- Public Member Functions inherited from dg::geo::aRealGenerator2d< real_type >
real_type width () const
 length in \( \zeta\) of the computational space
 
real_type height () const
 length in \( \eta\) of the computational space
 
bool isOrthogonal () const
 sparsity pattern for metric
 
void generate (const thrust::host_vector< real_type > &zeta1d, const thrust::host_vector< real_type > &eta1d, thrust::host_vector< real_type > &x, thrust::host_vector< real_type > &y, thrust::host_vector< real_type > &zetaX, thrust::host_vector< real_type > &zetaY, thrust::host_vector< real_type > &etaX, thrust::host_vector< real_type > &etaY) const
 Generate grid points and elements of the Jacobian.
 
virtual ~aRealGenerator2d ()
 

Additional Inherited Members

- Protected Member Functions inherited from dg::geo::aRealGenerator2d< real_type >
 aRealGenerator2d ()
 empty
 
 aRealGenerator2d (const aRealGenerator2d &)
 empty
 
aRealGenerator2doperator= (const aRealGenerator2d &)
 return *this
 

Detailed Description

Generate a simple orthogonal grid.

First discretize a closed flux surface. Then each point is followed along the gradient of Psi to obtain the points on other flux surfaces.

Note
find more details in M. Wiesenberger, M. Held, L. Einkemmer Streamline integration as a method for two-dimensional elliptic grid generation Journal of Computational Physics 340, 435-450 (2017)

Psi is the radial coordinate and you can choose various discretizations of the first line

std::unique_ptr<dg::geo::aGenerator2d> generator;
//create the magnetic field
js["magnetic_field"]["params"]);
//create a grid generator
std::string type = js["grid"]["generator"]["type"].asString();
int mode = 0;
if( type != "dsp")
mode = js["grid"]["generator"]["mode"].asInt();
std::cout << "Constructing "<<type<<" grid ... \n";
if( type == "flux")
generator = std::make_unique<dg::geo::FluxGenerator>( mag.get_psip(),
mag.get_ipol(), psi_0, psi_1, mag.R0(), 0., mode, false);
else if( type == "orthogonal")
{
double psi_init = js["grid"]["generator"]["firstline"].asDouble();
if( mode == 0 || mode == 1)
generator = std::make_unique<dg::geo::SimpleOrthogonal>(
mag.get_psip(), psi_0, psi_1, mag.R0(), 0., psi_init, mode);
if( mode > 1)
{
generator = std::make_unique<dg::geo::SimpleOrthogonal>(
mag.get_psip(), lc, psi_0, psi_1, mag.R0(), 0., psi_init,
mode%2);
}
}
else if( type == "separatrix-orthogonal")
{
double RX = mag.R0()-1.1*mag.params().triangularity()*mag.params().a();
double ZX = -1.1*mag.params().elongation()*mag.params().a();
dg::geo::findXpoint( mag.get_psip(), RX, ZX);
//dg::geo::CylindricalSymmTensorLvl1 monitor_chi;
double fx = js["grid"]["generator"]["fx"].asDouble();
generator = std::make_unique<dg::geo::SeparatrixOrthogonalAdaptor>(
mag.get_psip(), monitor_chi, psi_0, RX, ZX, mag.R0(), 0., mode, false, fx);
//psi_1 = -fx/(1.-fx)*psi_0;
}
else if ( type == "dsp")
{
double boxscaleRm = js["grid"][ "scaleR"].get( 0u, 1.05).asDouble();
double boxscaleRp = js["grid"][ "scaleR"].get( 1u, 1.05).asDouble();
double boxscaleZm = js["grid"][ "scaleZ"].get( 0u, 1.05).asDouble();
double boxscaleZp = js["grid"][ "scaleZ"].get( 1u, 1.05).asDouble();
const double Rmin=mag.R0()-boxscaleRm*mag.params().a();
const double Zmin=-boxscaleZm*mag.params().a();
const double Rmax=mag.R0()+boxscaleRp*mag.params().a();
const double Zmax=boxscaleZp*mag.params().a();
generator = std::make_unique<dg::geo::DSPGenerator>( mag,
Rmin, Rmax, Zmin, Zmax, 2.*M_PI/(double)Nz);
}
else if( type == "ribeiro-flux")
generator = std::make_unique<dg::geo::RibeiroFluxGenerator>( mag.get_psip(),
psi_0, psi_1, mag.R0(), 0., mode, false);
else if( type == "ribeiro")
generator = std::make_unique<dg::geo::Ribeiro>( mag.get_psip(),
psi_0, psi_1, mag.R0(), 0., mode, false);

Constructor & Destructor Documentation

◆ SimpleOrthogonal() [1/2]

dg::geo::SimpleOrthogonal::SimpleOrthogonal ( const CylindricalFunctorsLvl2 & psi,
double psi_0,
double psi_1,
double x0,
double y0,
double psi_firstline,
int mode = 0 )
inline

Construct a simple orthogonal grid.

Parameters
psi\(\psi(x,y)\) is the flux function and its derivatives in Cartesian coordinates (x,y)
psi_0first boundary (can be open)
psi_1second boundary (can be open)
x0a point on or close to the contour line given by psi_firstline
y0a point on or close to the contour line given by psi_firstline
psi_firstlinepsi value for first line discretization (must be a closed flux surface)
modeIndicate mode used to create the first line discretization: 0 is conformal, 1 is an equalarc adaption

◆ SimpleOrthogonal() [2/2]

dg::geo::SimpleOrthogonal::SimpleOrthogonal ( const CylindricalFunctorsLvl2 & psi,
const CylindricalSymmTensorLvl1 & chi,
double psi_0,
double psi_1,
double x0,
double y0,
double psi_firstline,
int mode = 0 )
inline

Construct a simple orthogonal grid.

Parameters
psi\(\psi(x,y)\) is the flux function and its derivatives in Cartesian coordinates (x,y)
chiis the monitor tensor and its divergenc in Cartesian coordinates (x,y)
psi_0first boundary (can be open)
psi_1second boundary (can be open)
x0a point on or close to the contour line given by psi_firstline
y0a point on or close to the contour line given by psi_firstline
psi_firstlinepsi value for first line discretization (must be a closed flux surface)
modeIndicate mode used to create the first line discretization: 0 is conformal, 1 is an equalarc adaption

Member Function Documentation

◆ clone()

virtual SimpleOrthogonal * dg::geo::SimpleOrthogonal::clone ( ) const
inlinefinaloverridevirtual

Abstract clone method that returns a copy on the heap.

Returns
a copy of *this on the heap

Implements dg::geo::aRealGenerator2d< real_type >.

◆ f0()

double dg::geo::SimpleOrthogonal::f0 ( ) const
inline

The grid constant.

Returns
f_0 is the grid constant s.a. width() )

The documentation for this struct was generated from the following file: