\[ \hat{\psi}_p \]
\[ \hat{\psi}_p(R,Z) =
\hat{R}_0P_{\psi}\Bigg\{\bar{R}^4/8 + A \left[ 1/2 \bar{R}^2 \ln{(\bar{R} )}-(\bar{R}^4 )/8\right]
+ \sum_{i=1}^{12} c_i\bar \psi_{pi}(\bar R, \bar Z) \Bigg\}
=
\hat{R}_0P_{\psi}\Bigg\{\bar{R}^4/8 + A \left[ 1/2 \bar{R}^2 \ln{(\bar{R} )}-(\bar{R}^4 )/8\right]
+c_1+
c_2 \bar{R}^2 +
c_3 \left[ \bar{Z}^2-\bar{R}^2 \ln{(\bar{R} )} \right] +
c_4 \left[\bar{R}^4 -4 \bar{R}^2 \bar{Z}^2 \right] +
c_5 \left[3 \bar{R}^4 \ln{(\bar{R} )}-9 \bar{R}^2 \bar{Z}^2-12 \bar{R}^2 \bar{Z}^2
\ln{(\bar{R} )}+2 \bar{Z}^4\right]+
c_6 \left[ \bar{R}^6 -12 \bar{R}^4 \bar{Z}^2+8 \bar{R}^2 \bar{Z}^4 \right] +
c_7 \left[-(15 \bar{R}^6 \ln{(\bar{R} )})+75 \bar{R}^4 \bar{Z}^2+180 \bar{R}^4
\bar{Z}^2 \ln{(\bar{R} )}-140 \bar{R}^2 \bar{Z}^4-120 \bar{R}^2 \bar{Z}^4
\ln{(\bar{R} )}+8 \bar{Z}^6 \right] +
c_8 \bar{Z}+c_9 \bar{R}^2 \bar{Z}+(\bar{R}^4 )/8 +
c_{10} \left[ \bar{Z}^3-3 \bar{R}^2 \bar{Z} \ln{(\bar{R} )}\right]+
c_{11} \left[3 \bar{R}^4 \bar{Z}-4 \bar{R}^2 \bar{Z}^3\right] +
c_{12} \left[-(45 \bar{R}^4 \bar{Z})+60 \bar{R}^4 \bar{Z} \ln{(\bar{R} )}-
80 \bar{R}^2 \bar{Z}^3 \ln{(\bar{R} )}+8 \bar{Z}^5 \right]
\Bigg\} \]
with \( \bar R := \frac{ R}{R_0} \) and \(\bar Z := \frac{Z}{R_0}\)