2#include <boost/math/special_functions.hpp>
10template <
class T =
double>
23 return boost::math::cyl_bessel_i(0,
x);
31template <
class T =
double>
44 return exp(
x)*boost::math::cyl_bessel_i(0,
x);
57 if ( fabs(
x) < 1e-16 )
61 return (exp(
x) - 1)/
x;
72 if ( fabs(
x) < 1e-16 )
75 return 1./2.+
x*(1./6.+
x*(1./24. +
x/120.));
76 return ((exp(
x) - 1)/
x - 1)/
x;
87 if ( fabs(
x) < 1e-16 )
90 return 1./6. +
x*(1./24.+
x*(1./120. +
x/720.));
91 return (((exp(
x) - 1)/
x - 1)/
x-1./2.)/
x;
101 if ( fabs(
x) < 1e-16 )
104 return 1./24. +
x*(1./120.+
x*(1./720. +
x/5040));
105 return ((((exp(
x) - 1)/
x - 1)/
x-1./2.)/
x-1./6.)/
x;
T phi1(T x)
Definition: functors.h:56
T phi3(T x)
Definition: functors.h:86
T phi4(T x)
Definition: functors.h:100
T phi2(T x)
Definition: functors.h:71
Classes for Krylov space approximations of a Matrix-Vector product.
with the zeroth order modified Bessel function
Definition: functors.h:12
T operator()(T x) const
return with the zeroth order modified Bessel function
Definition: functors.h:21
BESSELI0()
Definition: functors.h:13
with the zeroth order modified Bessel function
Definition: functors.h:33
GAMMA0()
Definition: functors.h:34
T operator()(T x) const
return with the zeroth order modified Bessel function
Definition: functors.h:42