|
struct | BESSELI0 |
| \( f(x) = I_0 (x)\) with \(I_0\) the zeroth order modified Bessel function More...
|
|
struct | ConvertsToFunctionalButcherTableau |
| Convert identifiers to their corresponding dg::mat::FunctionalButcherTableau . More...
|
|
struct | DirectSqrtCauchy |
| Shortcut for \(b \approx \sqrt{A} x \) solve directly via sqrt Cauchy combined with PCG inversions. More...
|
|
struct | ExponentialERKStep |
| Exponential Runge-Kutta fixed-step time-integration for \( \dot y = A y + g(t,y)\). More...
|
|
struct | ExponentialStep |
| Exponential one step time-integration for \( \dot y = A y \). More...
|
|
struct | FunctionalButcherTableau |
| Manage coefficients of a functional (extended) Butcher tableau. More...
|
|
struct | GAMMA0 |
| \( f(x) = \Gamma_0 (x) := I_0 (x) exp(x) \) with \(I_0\) the zeroth order modified Bessel function More...
|
|
struct | InvSqrtODE |
| Right hand side of the square root ODE. More...
|
|
struct | MatrixFunction |
| Computation of \( \vec x = f(A)\vec b\) for self-adjoint positive definite \( A\). More...
|
|
struct | MatrixSqrt |
| Fast computation of \( \vec x = A^{\pm 1/2}\vec b\) for self-adjoint positive definite \(A\). More...
|
|
class | MCG |
| EXPERIMENTAL Tridiagonalize \(A\) and approximate \(f(A)b \approx R f(\tilde T) e_1\) via CG algorithm. A is self-adjoint in the weights \( W\). More...
|
|
class | MCGFuncEigen |
| EXPERIMENTAL Shortcut for \(x \approx f(A) b \) solve via exploiting first a Krylov projection achieved by the M-CG method and a matrix function computation via Eigen-decomposition. More...
|
|
class | PolCharge |
| Various arbitary wavelength polarization charge operators of delta-f (df) and full-f (ff) More...
|
|
class | PolChargeN |
| EXPERIMENTAL polarization solver class for N. More...
|
|
struct | SqrtCauchyInt |
| Cauchy integral \( \sqrt{A} b= A\frac{ 2 K' \sqrt{m}}{\pi N} \sum_{j=1}^{N} ( w_j^2 I + A)^{-1} c_j d_j b \) More...
|
|
struct | TensorElliptic |
| Matrix class that represents the arbitrary polarization operator. More...
|
|
class | TridiagInvD |
| Compute the inverse of a general tridiagonal matrix. More...
|
|
class | TridiagInvDF |
| USE THIS ONE Compute the inverse of a general tridiagonal matrix. The algorithm does not rely on the determinant. More...
|
|
class | TridiagInvHMGTI |
| Compute the inverse of a general tridiagonal matrix. More...
|
|
class | UniversalLanczos |
| Tridiagonalize \(A\) and approximate \(f(A)b \approx |b|_W V f(T) e_1\) via Lanczos algorithm. A is self-adjoint in the weights \( W\). More...
|
|
|
template<class T > |
T | phi1 (T x) |
| \( f(x) = (\exp(x) - 1)/x\) More...
|
|
template<class T > |
T | phi2 (T x) |
| \( f(x) = (\exp(x) - x - 1)/x^2\) More...
|
|
template<class T > |
T | phi3 (T x) |
| \( f(x) = (\exp(x) - x^2/2 -x- 1)/x^3\) More...
|
|
template<class T > |
T | phi4 (T x) |
| \( f(x) = (\exp(x) - x^3/6 - x^2/2 -x- 1)/x^4\) More...
|
|
template<class UnaryOp > |
auto | make_FuncEigen_Te1 (UnaryOp f) |
| Create a functor that uses Eigenvalue decomposition to compute \( f(T)\vec e_1 = E f(\Lambda) E^T \vec e_1 \) for symmetric tridiagonal T . More...
|
|
template<class value_type > |
auto | make_SqrtCauchy_Te1 (int exp, std::array< value_type, 2 > EVs, unsigned stepsCauchy) |
| Create a functor that computes \( \sqrt{T^{\pm 1}} \vec e_1\) using SqrtCauchyInt. More...
|
|
template<class value_type > |
auto | make_SqrtCauchyEigen_Te1 (int exp, std::array< value_type, 2 > EVs, unsigned stepsCauchy) |
| Create a functor that computes \( \sqrt{T^{\pm 1}} \vec e_1\) using either Eigen or SqrtCauchy solve based on whichever is fastest for given size. More...
|
|
template<class value_type > |
auto | make_SqrtODE_Te1 (int exp, std::string tableau, value_type rtol, value_type atol, unsigned &number) |
| Create a functor that computes \( \sqrt{T^{\pm 1}} \vec e_1\) using ODE solve. More...
|
|
static auto | make_Linear_Te1 (int exp) |
| Create a functor that computes \( T^{\pm 1} \vec e_1\) directly. More...
|
|
template<class value_type , class ExplicitRHS > |
auto | make_directODESolve (ExplicitRHS &&ode, std::string tableau, value_type epsTimerel, value_type epsTimeabs, unsigned &number, value_type t0=0., value_type t1=1.) |
| Operator that integrates an ODE from 0 to 1 with an adaptive ERK class as timestepper More...
|
|
template<class Matrix , class Preconditioner , class Container > |
InvSqrtODE< Container > | make_inv_sqrtodeCG (Matrix &A, const Preconditioner &P, const Container &weights, dg::get_value_type< Container > epsCG) |
| Right hand side of the square root ODE. More...
|
|
template<class Matrix , class Container > |
InvSqrtODE< Container > | make_inv_sqrtodeTri (const Matrix &TH, const Container ©able) |
|
template<class MatrixType > |
auto | make_expode (MatrixType &A) |
| Right hand side of the exponential ODE. More...
|
|
template<class MatrixType > |
auto | make_besselI0ode (MatrixType &A) |
| Right hand side of the (zeroth order) modified Bessel function ODE, rewritten as a system of coupled first order ODEs: More...
|
|
template<class value_type > |
value_type | compute_Tinv_m1 (const cusp::dia_matrix< int, value_type, cusp::host_memory > &T, unsigned size) |
| Computes the value of \( (T^{-1})_{m1} = \langle \vec e_m, T^{-1}\vec e_1\rangle\) via a Thomas algorithm. More...
|
|
template<class value_type > |
void | compute_Tinv_y (const cusp::dia_matrix< int, value_type, cusp::host_memory > &T, thrust::host_vector< value_type > &x, const thrust::host_vector< value_type > &y, value_type a=1., value_type d=0.) |
| Computes the value of \( x = ((aT+dI)^{-1})y \) via Thomas algorithm. More...
|
|
template<class value_type > |
void | invert (const cusp::dia_matrix< int, value_type, cusp::host_memory > &T, cusp::coo_matrix< int, value_type, cusp::host_memory > &Tinv) |
| Invert a tridiagonal matrix. More...
|
|
template<class value_type > |
cusp::coo_matrix< int, value_type, cusp::host_memory > | invert (const cusp::dia_matrix< int, value_type, cusp::host_memory > &T) |
| Invert a tridiagonal matrix. More...
|
|
template<class value_type > |
std::array< value_type, 2 > | compute_extreme_EV (const cusp::dia_matrix< int, value_type, cusp::host_memory > &T) |
| Compute extreme Eigenvalues of a symmetric tridiangular matrix. More...
|
|