Extension: Matrix functions
#include "dg/matrix/matrix.h"
Loading...
Searching...
No Matches
lanczos.h
Go to the documentation of this file.
1#pragma once
2
3#include "dg/algorithm.h"
4#include "tridiaginv.h"
5#include "matrixfunction.h"
6
7
12namespace dg{
13namespace mat{
14
64template< class ContainerType >
66{
67 public:
77 UniversalLanczos( const ContainerType& copyable, unsigned max_iterations)
78 {
79 m_v = m_vp = m_vm = copyable;
80 m_max_iter = max_iterations;
81 m_iter = max_iterations;
82 //sub matrix and vector
83 set_iter( max_iterations);
84 }
86 template<class ...Params>
87 void construct( Params&& ...ps)
88 {
89 //construct and swap
90 *this = UniversalLanczos( std::forward<Params>( ps)...);
91 }
92
95 void set_max( unsigned new_max) {
96 m_max_iter = new_max;
97 set_iter( new_max);
98 }
99
102 unsigned get_max() const {return m_max_iter;}
103
106 void set_verbose( bool verbose){ m_verbose = verbose;}
107
110 value_type get_bnorm() const{return m_bnorm;}
111
115 unsigned get_iter() const {return m_iter;}
116
144 template < class MatrixType, class ContainerType0, class ContainerType1,
145 class ContainerType2, class FuncTe1>
146 unsigned solve(ContainerType0& x, FuncTe1 f,
147 MatrixType&& A, const ContainerType1& b,
148 const ContainerType2& weights, value_type eps,
149 value_type nrmb_correction = 1.,
150 std::string error_norm = "universal",
151 value_type res_fac = 1.,
152 unsigned q = 1 )
153 {
154 tridiag( f, std::forward<MatrixType>(A), b, weights, eps,
155 nrmb_correction, error_norm, res_fac, q);
156 if( "residual" == error_norm)
157 m_yH = f( m_TH);
158 //Compute x = |b|_M V f(T) e1
159 normMbVy(std::forward<MatrixType>(A), m_TH, m_yH, x, b,
160 m_bnorm);
161 return m_iter;
162 }
174 template< class MatrixType, class ContainerType0, class ContainerType1>
175 const dg::TriDiagonal<thrust::host_vector<value_type>>& tridiag( MatrixType&& A, const ContainerType0& b,
176 const ContainerType1& weights, value_type eps = 1e-12,
177 value_type nrmb_correction = 1.,
178 std::string error_norm = "universal",
179 value_type res_fac = 1.,
180 unsigned q = 1 )
181 {
182 auto op = make_Linear_Te1( -1);
183 tridiag( op, std::forward<MatrixType>(A), b, weights, eps,
184 nrmb_correction, error_norm, res_fac, q);
185 return m_TH;
186 }
187
200 template< class MatrixType, class ContainerType0,
201 class ContainerType1,class ContainerType2>
202 void normMbVy( MatrixType&& A,
203 const dg::TriDiagonal<thrust::host_vector<value_type>>& T,
204 const ContainerType0& y,
205 ContainerType1& x,
206 const ContainerType2& b, value_type bnorm)
207 {
208 dg::blas1::copy(0., x);
209 if( 0 == bnorm )
210 {
211 return;
212 }
213 dg::blas1::axpby(1./bnorm, b, 0.0, m_v); //m_v[1] = b/||b||
214 dg::blas1::copy(0., m_vm);
215 // check if (potentially) all higher elements in y are zero
216 unsigned less_iter = 0;
217 for( unsigned i=0; i<y.size(); i++)
218 if( y[i] != 0)
219 less_iter = i+1;
220 dg::blas1::axpby( y[0]*bnorm, m_v, 1., x); //Compute b= |b| V y
221
222 for ( unsigned i=0; i<less_iter-1; i++)
223 {
224 dg::blas2::symv( std::forward<MatrixType>(A), m_v, m_vp);
226 -T.M[i]/T.P[i], m_vm,
227 -T.O[i]/T.P[i], m_v,
228 1.0/T.P[i], m_vp);
229 dg::blas1::axpby( y[i+1]*bnorm, m_vp, 1., x); //Compute b= |b| V y
230 m_vm.swap( m_v);
231 m_v.swap( m_vp);
232 }
233 }
234
256 template < class UnaryOp, class MatrixType,
257 class ContainerType1, class ContainerType2>
259 MatrixType&& A, const ContainerType1& b,
260 const ContainerType2& weights, value_type eps,
261 value_type nrmb_correction,
262 std::string error_norm = "residual",
263 value_type res_fac = 1.,
264 unsigned q = 1 )
265 {
266#ifdef MPI_VERSION
267 int rank;
268 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
269#endif //MPI
270 m_bnorm = sqrt(dg::blas2::dot(b, weights, b));
271 if( m_verbose)
272 {
273 DG_RANK0 std::cout << "# Norm of b "<<m_bnorm <<"\n";
274 DG_RANK0 std::cout << "# Res factor "<<res_fac <<"\n";
275 DG_RANK0 std::cout << "# Residual errors: \n";
276 }
277 if( m_bnorm == 0)
278 {
279 set_iter(1);
280 return m_TH;
281 }
282 value_type residual;
283 dg::blas1::axpby(1./m_bnorm, b, 0.0, m_v); //m_v[1] = x/||x||
284 value_type betaip = 0.;
285 value_type alphai = 0.;
286 for( unsigned i=0; i<m_max_iter; i++)
287 {
288 m_TH.M[i] = betaip; // -1 diagonal
289 dg::blas2::symv(std::forward<MatrixType>(A), m_v, m_vp);
290 dg::blas1::axpby(-betaip, m_vm, 1.0, m_vp); // only - if i>0, therefore no if (i>0)
291 alphai = dg::blas2::dot(m_vp, weights, m_v);
292 m_TH.O[i] = alphai;
293 dg::blas1::axpby(-alphai, m_v, 1.0, m_vp);
294 betaip = sqrt(dg::blas2::dot(m_vp, weights, m_vp));
295 if (betaip == 0)
296 {
297 if( m_verbose)
298 DG_RANK0 std::cout << "beta["<<i+1 <<"]=0 encountered\n";
299 set_iter(i+1);
300 break;
301 }
302 m_TH.P[i] = betaip; // +1 diagonal
303
304 value_type xnorm = 0.;
305 if( "residual" == error_norm)
306 {
307 residual = compute_residual_error( m_TH, i)*m_bnorm;
308 xnorm = m_bnorm;
309 }
310 else
311 {
312 if( i>=q &&( (i<=10) || (i>10 && i%10 == 0) ))
313 {
314 residual = compute_universal_error( m_TH, i, q, f,
315 m_yH)*m_bnorm;
316 xnorm = dg::fast_l2norm( m_yH)*m_bnorm;
317 }
318 else
319 {
320 residual = 1e10;
321 xnorm = m_bnorm;
322 }
323 }
324 if( m_verbose)
325 DG_RANK0 std::cout << "# ||r||_W = " << residual << "\tat i = " << i << "\n";
326 if (res_fac*residual< eps*(xnorm + nrmb_correction) )
327 {
328 set_iter(i+1);
329 break;
330 }
331 dg::blas1::scal(m_vp, 1./betaip);
332 m_vm.swap(m_v);
333 m_v.swap( m_vp);
334 set_iter( m_max_iter);
335 }
336 return m_TH;
337 }
338 private:
339 value_type compute_residual_error( const dg::TriDiagonal<thrust::host_vector<value_type>>& TH, unsigned iter)
340 {
341 value_type T1 = compute_Tinv_m1( TH, iter+1);
342 return TH.P[iter]*fabs(T1); //Tinv_i1
343 }
344 template<class UnaryOp>
345 value_type compute_universal_error( const dg::TriDiagonal<thrust::host_vector<value_type>>& TH, unsigned iter,
346 unsigned q, UnaryOp f, HVec& yH)
347 {
348 unsigned new_iter = iter + 1 + q;
349 set_iter( iter+1);
351 for( unsigned u=0; u<iter+1; u++)
352 {
353 THtilde.M[u] = TH.M[u];
354 THtilde.O[u] = TH.O[u];
355 THtilde.P[u] = TH.P[u];
356 }
357 for( unsigned u=1; u<=q; u++)
358 {
359 THtilde.M[ iter+u] = u==1 ? TH.P[iter] :
360 TH.O[iter+1-u];
361 THtilde.O[ iter+u] = TH.O[ iter-u];
362 THtilde.P[ iter+u] = TH.M[ iter-u];
363 }
364 yH = f( TH);
365 HVec yHtilde = f( THtilde);
366 for( unsigned u=0; u<yH.size(); u++)
367 yHtilde[u] -= yH[u];
368 value_type norm = dg::fast_l2norm( yHtilde);
369 return norm;
370 }
371
374 void set_iter( unsigned new_iter) {
375 m_TH.resize(new_iter);
376 m_iter = new_iter;
377 }
378 ContainerType m_v, m_vp, m_vm;
380 HVec m_yH;
381 unsigned m_iter, m_max_iter;
382 bool m_verbose = false;
383 value_type m_bnorm = 0.;
384};
385
386
387} //namespace mat
388} //namespace dg
389
Tridiagonalize and approximate via Lanczos algorithm. A is self-adjoint in the weights .
Definition lanczos.h:66
value_type get_bnorm() const
Norm of b from last call to operator()
Definition lanczos.h:110
const dg::TriDiagonal< thrust::host_vector< value_type > > & tridiag(UnaryOp f, MatrixType &&A, const ContainerType1 &b, const ContainerType2 &weights, value_type eps, value_type nrmb_correction, std::string error_norm="residual", value_type res_fac=1., unsigned q=1)
Tridiagonalization of A using Lanczos method.
Definition lanczos.h:258
get_value_type< ContainerType > value_type
Definition lanczos.h:68
const dg::TriDiagonal< thrust::host_vector< value_type > > & tridiag(MatrixType &&A, const ContainerType0 &b, const ContainerType1 &weights, value_type eps=1e-12, value_type nrmb_correction=1., std::string error_norm="universal", value_type res_fac=1., unsigned q=1)
Definition lanczos.h:175
void normMbVy(MatrixType &&A, const dg::TriDiagonal< thrust::host_vector< value_type > > &T, const ContainerType0 &y, ContainerType1 &x, const ContainerType2 &b, value_type bnorm)
compute from a given tridiagonal matrix T and in-place re-computation of V
Definition lanczos.h:202
UniversalLanczos(const ContainerType &copyable, unsigned max_iterations)
Allocate memory for the method.
Definition lanczos.h:77
void set_verbose(bool verbose)
Set or unset debugging output during iterations.
Definition lanczos.h:106
unsigned get_max() const
Get the current maximum number of iterations.
Definition lanczos.h:102
unsigned get_iter() const
Get the number of iterations in the last call to tridiag or solve (same as T.num_rows)
Definition lanczos.h:115
UniversalLanczos()
Allocate nothing, Call construct method before usage.
Definition lanczos.h:70
unsigned solve(ContainerType0 &x, FuncTe1 f, MatrixType &&A, const ContainerType1 &b, const ContainerType2 &weights, value_type eps, value_type nrmb_correction=1., std::string error_norm="universal", value_type res_fac=1., unsigned q=1)
via Lanczos and matrix function computation. A is self-adjoint in the weights .
Definition lanczos.h:146
void set_max(unsigned new_max)
Set the maximum number of iterations.
Definition lanczos.h:95
void construct(Params &&...ps)
Perfect forward parameters to one of the constructors.
Definition lanczos.h:87
void copy(const ContainerTypeIn &source, ContainerTypeOut &target)
void axpbypgz(value_type alpha, const ContainerType1 &x, value_type1 beta, const ContainerType2 &y, value_type2 gamma, ContainerType &z)
void axpby(value_type alpha, const ContainerType1 &x, value_type1 beta, ContainerType &y)
void scal(ContainerType &x, value_type alpha)
auto dot(const ContainerType1 &x, const MatrixType &m, const ContainerType2 &y)
void symv(MatrixType &&M, const ContainerType1 &x, ContainerType2 &y)
typename TensorTraits< std::decay_t< Vector > >::value_type get_value_type
value_type compute_Tinv_m1(const dg::TriDiagonal< thrust::host_vector< value_type > > &T, unsigned size)
Computes the value of via a Thomas algorithm.
Definition tridiaginv.h:95
static auto fast_l2norm
auto make_Linear_Te1(int exp)
Create a functor that computes directly.
Definition matrixfunction.h:180
thrust::host_vector< double > HVec
Classes for Krylov space approximations of a Matrix-Vector product.
void resize(unsigned size)
#define DG_RANK0