3#include "dg/algorithm.h"
64template<
class ContainerType >
79 m_v = m_vp = m_vm = copyable;
80 m_max_iter = max_iterations;
81 m_iter = max_iterations;
83 set_iter( max_iterations);
86 template<
class ...Params>
144 template <
class MatrixType,
class ContainerType0,
class ContainerType1,
145 class ContainerType2,
class FuncTe1>
146 unsigned solve(ContainerType0& x, FuncTe1 f,
147 MatrixType&& A,
const ContainerType1& b,
148 const ContainerType2& weights,
value_type eps,
150 std::string error_norm =
"universal",
154 tridiag( f, std::forward<MatrixType>(A), b, weights, eps,
155 nrmb_correction, error_norm, res_fac, q);
156 if(
"residual" == error_norm)
159 normMbVy(std::forward<MatrixType>(A), m_TH, m_yH,
x, b,
174 template<
class MatrixType,
class ContainerType0,
class ContainerType1>
176 const ContainerType1& weights,
value_type eps = 1e-12,
178 std::string error_norm =
"universal",
183 tridiag( op, std::forward<MatrixType>(A), b, weights, eps,
184 nrmb_correction, error_norm, res_fac, q);
200 template<
class MatrixType,
class ContainerType0,
201 class ContainerType1,
class ContainerType2>
204 const ContainerType0&
y,
216 unsigned less_iter = 0;
217 for(
unsigned i=0; i<
y.size(); i++)
222 for (
unsigned i=0; i<less_iter-1; i++)
226 -T.M[i]/T.P[i], m_vm,
256 template <
class UnaryOp,
class MatrixType,
257 class ContainerType1,
class ContainerType2>
259 MatrixType&& A,
const ContainerType1& b,
260 const ContainerType2& weights,
value_type eps,
262 std::string error_norm =
"residual",
268 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
273 DG_RANK0 std::cout <<
"# Norm of b "<<m_bnorm <<
"\n";
274 DG_RANK0 std::cout <<
"# Res factor "<<res_fac <<
"\n";
275 DG_RANK0 std::cout <<
"# Residual errors: \n";
286 for(
unsigned i=0; i<m_max_iter; i++)
298 DG_RANK0 std::cout <<
"beta["<<i+1 <<
"]=0 encountered\n";
305 if(
"residual" == error_norm)
307 residual = compute_residual_error( m_TH, i)*m_bnorm;
312 if( i>=q &&( (i<=10) || (i>10 && i%10 == 0) ))
314 residual = compute_universal_error( m_TH, i, q, f,
325 DG_RANK0 std::cout <<
"# ||r||_W = " << residual <<
"\tat i = " << i <<
"\n";
326 if (res_fac*residual< eps*(xnorm + nrmb_correction) )
334 set_iter( m_max_iter);
342 return TH.P[iter]*fabs(T1);
344 template<
class UnaryOp>
346 unsigned q, UnaryOp f,
HVec& yH)
348 unsigned new_iter = iter + 1 + q;
351 for(
unsigned u=0; u<iter+1; u++)
353 THtilde.M[u] = TH.M[u];
354 THtilde.O[u] = TH.O[u];
355 THtilde.P[u] = TH.P[u];
357 for(
unsigned u=1; u<=q; u++)
359 THtilde.M[ iter+u] = u==1 ? TH.P[iter] :
361 THtilde.O[ iter+u] = TH.O[ iter-u];
362 THtilde.P[ iter+u] = TH.M[ iter-u];
365 HVec yHtilde = f( THtilde);
366 for(
unsigned u=0; u<yH.size(); u++)
374 void set_iter(
unsigned new_iter) {
378 ContainerType m_v, m_vp, m_vm;
381 unsigned m_iter, m_max_iter;
382 bool m_verbose =
false;
Tridiagonalize and approximate via Lanczos algorithm. A is self-adjoint in the weights .
Definition lanczos.h:66
value_type get_bnorm() const
Norm of b from last call to operator()
Definition lanczos.h:110
const dg::TriDiagonal< thrust::host_vector< value_type > > & tridiag(UnaryOp f, MatrixType &&A, const ContainerType1 &b, const ContainerType2 &weights, value_type eps, value_type nrmb_correction, std::string error_norm="residual", value_type res_fac=1., unsigned q=1)
Tridiagonalization of A using Lanczos method.
Definition lanczos.h:258
get_value_type< ContainerType > value_type
Definition lanczos.h:68
const dg::TriDiagonal< thrust::host_vector< value_type > > & tridiag(MatrixType &&A, const ContainerType0 &b, const ContainerType1 &weights, value_type eps=1e-12, value_type nrmb_correction=1., std::string error_norm="universal", value_type res_fac=1., unsigned q=1)
Definition lanczos.h:175
void normMbVy(MatrixType &&A, const dg::TriDiagonal< thrust::host_vector< value_type > > &T, const ContainerType0 &y, ContainerType1 &x, const ContainerType2 &b, value_type bnorm)
compute from a given tridiagonal matrix T and in-place re-computation of V
Definition lanczos.h:202
UniversalLanczos(const ContainerType ©able, unsigned max_iterations)
Allocate memory for the method.
Definition lanczos.h:77
void set_verbose(bool verbose)
Set or unset debugging output during iterations.
Definition lanczos.h:106
unsigned get_max() const
Get the current maximum number of iterations.
Definition lanczos.h:102
unsigned get_iter() const
Get the number of iterations in the last call to tridiag or solve (same as T.num_rows)
Definition lanczos.h:115
UniversalLanczos()
Allocate nothing, Call construct method before usage.
Definition lanczos.h:70
unsigned solve(ContainerType0 &x, FuncTe1 f, MatrixType &&A, const ContainerType1 &b, const ContainerType2 &weights, value_type eps, value_type nrmb_correction=1., std::string error_norm="universal", value_type res_fac=1., unsigned q=1)
via Lanczos and matrix function computation. A is self-adjoint in the weights .
Definition lanczos.h:146
void set_max(unsigned new_max)
Set the maximum number of iterations.
Definition lanczos.h:95
void construct(Params &&...ps)
Perfect forward parameters to one of the constructors.
Definition lanczos.h:87
void copy(const ContainerTypeIn &source, ContainerTypeOut &target)
void axpbypgz(value_type alpha, const ContainerType1 &x, value_type1 beta, const ContainerType2 &y, value_type2 gamma, ContainerType &z)
void axpby(value_type alpha, const ContainerType1 &x, value_type1 beta, ContainerType &y)
void scal(ContainerType &x, value_type alpha)
auto dot(const ContainerType1 &x, const MatrixType &m, const ContainerType2 &y)
void symv(MatrixType &&M, const ContainerType1 &x, ContainerType2 &y)
typename TensorTraits< std::decay_t< Vector > >::value_type get_value_type
value_type compute_Tinv_m1(const dg::TriDiagonal< thrust::host_vector< value_type > > &T, unsigned size)
Computes the value of via a Thomas algorithm.
Definition tridiaginv.h:95
auto make_Linear_Te1(int exp)
Create a functor that computes directly.
Definition matrixfunction.h:180
thrust::host_vector< double > HVec
Classes for Krylov space approximations of a Matrix-Vector product.
void resize(unsigned size)