Extension: Matrix functions
#include "dg/matrix/matrix.h"
tridiaginv.h File Reference
#include <boost/math/special_functions.hpp>
#include <cusp/dia_matrix.h>
#include <cusp/coo_matrix.h>
#include <cusp/lapack/lapack.h>
#include "dg/algorithm.h"
#include "functors.h"

Go to the source code of this file.

Classes

class  dg::mat::TridiagInvHMGTI< ContainerType, DiaMatrix, CooMatrix >
 Compute the inverse of a general tridiagonal matrix. More...
 
class  dg::mat::TridiagInvDF< ContainerType, DiaMatrix, CooMatrix >
 USE THIS ONE Compute the inverse of a general tridiagonal matrix. The algorithm does not rely on the determinant. More...
 
class  dg::mat::TridiagInvD< ContainerType, DiaMatrix, CooMatrix >
 Compute the inverse of a general tridiagonal matrix. More...
 

Namespaces

namespace  dg
 Classes for Krylov space approximations of a Matrix-Vector product.
 
namespace  dg::mat
 

Functions

template<class value_type >
value_type dg::mat::compute_Tinv_m1 (const cusp::dia_matrix< int, value_type, cusp::host_memory > &T, unsigned size)
 Computes the value of \( (T^{-1})_{m1} = \langle \vec e_m, T^{-1}\vec e_1\rangle\) via a Thomas algorithm. More...
 
template<class value_type >
void dg::mat::compute_Tinv_y (const cusp::dia_matrix< int, value_type, cusp::host_memory > &T, thrust::host_vector< value_type > &x, const thrust::host_vector< value_type > &y, value_type a=1., value_type d=0.)
 Computes the value of \( x = ((aT+dI)^{-1})y \) via Thomas algorithm. More...
 
template<class value_type >
void dg::mat::invert (const cusp::dia_matrix< int, value_type, cusp::host_memory > &T, cusp::coo_matrix< int, value_type, cusp::host_memory > &Tinv)
 Invert a tridiagonal matrix. More...
 
template<class value_type >
cusp::coo_matrix< int, value_type, cusp::host_memory > dg::mat::invert (const cusp::dia_matrix< int, value_type, cusp::host_memory > &T)
 Invert a tridiagonal matrix. More...
 
template<class value_type >
std::array< value_type, 2 > dg::mat::compute_extreme_EV (const cusp::dia_matrix< int, value_type, cusp::host_memory > &T)
 Compute extreme Eigenvalues of a symmetric tridiangular matrix. More...