Extension: Matrix functions
#include "dg/matrix/matrix.h"
Loading...
Searching...
No Matches
tridiaginv.h
Go to the documentation of this file.
1#pragma once
2
3#include <boost/math/special_functions.hpp> // has to be included before lapack in certain versions
4#include "lapacke.h"
5#include "dg/algorithm.h"
6
7#include "functors.h"
12namespace dg{
13namespace mat{
15namespace lapack
16{
17// Resources:
18// FORTRAN https://www.netlib.org/lapack/explore-html/index.html
19// C-Bindings https://www.netlib.org/lapack/lapacke.html
20// How to convert the fortran binding to our interface:
21// 1. Go to relevant Fortran routine ( usually there are separate routine for
22// each value type; single, double ,complex )
23// 2.0 The C-bindings return a lapack_int "info": throw an error if it is not 0
24// 2.1 When matrices are involved they take as first parameter a lapack_int "order" LAPACK_COL_MAJOR or LAPACK_ROW_MAJOR (Using the latter is slower because it needs to transpose, but is how e.g. our SquareMatrix is ordered)
25// 3. Replace all arrays with a ContainerType in our interface
26// 4. Use C++-17 if constexpr to dispatch value type
27//
28// Compute Eigenvalues and, optionally, Eigenvectors of a real symmetric tridiagonal matrix A
29template<class ContainerType0, class ContainerType1, class ContainerType2, class ContainerType3>
30void stev(
31 lapack_int order, // LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR
32 char job, // 'N' Compute Eigenvalues only, 'V' Compute Eigenvalues and Eigenvectors
33 ContainerType0& D, // diagonal of T on input, Eigenvalues on output
34 ContainerType1& E, // subdiagonal of T on input |size D.size()-1 ; in E[0] - E[D.size()-2]|; destroyed on output
35 ContainerType2& Z, // IF job = 'V' && column major then the i-th column contains i-th EV, if job = 'N' not referenced
36 ContainerType3& work // If job = 'V' needs size max( 1, 2*D.size() - 2), else not referenced
37 )
38{
39 using value_type = dg::get_value_type<ContainerType0>;
40 static_assert( std::is_same_v<value_type, double> or std::is_same_v<value_type, float>,
41 "Value type must be either float or double");
42 static_assert( std::is_same_v<dg::get_value_type<ContainerType1>, value_type> &&
43 std::is_same_v<dg::get_value_type<ContainerType2>, value_type> &&
44 std::is_same_v<dg::get_value_type<ContainerType3>, value_type>,
45 "All Vectors must have same value type");
46 static_assert( std::is_same_v<dg::get_execution_policy<ContainerType0>, dg::SerialTag> &&
47 std::is_same_v<dg::get_execution_policy<ContainerType1>, dg::SerialTag> &&
48 std::is_same_v<dg::get_execution_policy<ContainerType2>, dg::SerialTag> &&
49 std::is_same_v<dg::get_execution_policy<ContainerType3>, dg::SerialTag>,
50 "All Vectors must have serial execution policy");
51
52 // job = 'N' Compute Eigenvalues only
53 // job = 'V' Compute Eigenvalues and Eigenvectors
54 lapack_int N = D.size();
55 value_type * D_ptr = thrust::raw_pointer_cast( &D[0]);
56 value_type * E_ptr = thrust::raw_pointer_cast( &E[0]);
57 value_type * Z_ptr = nullptr;
58 lapack_int ldz = N;
59 value_type * work_ptr = nullptr;
60 if( job == 'V')
61 {
62 Z_ptr = thrust::raw_pointer_cast( &Z[0]);
63 work_ptr = thrust::raw_pointer_cast( &work[0]);
64 }
65
66 lapack_int info;
67 if constexpr ( std::is_same_v<value_type, double>)
68 info = LAPACKE_dstev_work( order, job, N, D_ptr, E_ptr, Z_ptr, ldz, work_ptr);
69 else if constexpr ( std::is_same_v<value_type, float>)
70 info = LAPACKE_sstev_work( order, job, N, D_ptr, E_ptr, Z_ptr, ldz, work_ptr);
71 if( info != 0)
72 {
73 throw dg::Error( dg::Message(_ping_) << "stev failed with error code "<<info<<"\n");
74 }
75}
76
77}
79
82
94template<class value_type>
95value_type compute_Tinv_m1( const dg::TriDiagonal<thrust::host_vector<value_type>>
96 & T, unsigned size)
97{
98 // P = Plus diagonal
99 // O = zerO diagonal
100 // M = Minus diagonal
101 value_type ci = T.P[0]/T.O[0], ciold = 0.;
102 value_type di = 1./T.O[0], diold = 0.;
103 for( unsigned i=1; i<size; i++)
104 {
105 ciold = ci, diold = di;
106 ci = T.P[i]/ ( T.O[i]-T.M[i]*ciold);
107 di = -T.M[i]*diold/(T.O[i]-T.M[i]*ciold);
108 }
109 return di;
110}
123template<class value_type>
124void compute_Tinv_y( const dg::TriDiagonal<thrust::host_vector<value_type>>
125 & T,
126 thrust::host_vector<value_type>& x,
127 const thrust::host_vector<value_type>& y, value_type a = 1.,
128 value_type d = 0.)
129{
130 unsigned size = y.size();
131 x.resize(size);
132 thrust::host_vector<value_type> ci(size), di(size);
133 ci[0] = a*T.P[0]/( a*T.O[0] + d);
134 di[0] = y[0]/( a*T.O[0] + d);
135 for( unsigned i=1; i<size; i++)
136 {
137 ci[i] = a*T.P[i]/ ( a*T.O[i] + d -a*T.M[i]*ci[i-1]);
138 di[i] = (y[i]-a*T.M[i]*di[i-1])/(a*T.O[i] + d
139 -a*T.M[i]*ci[i-1]);
140 }
141 x[size-1] = di[size-1];
142 for( int i=size-2; i>=0; i--)
143 x[i] = di[i] - ci[i]*x[i+1];
144}
145
146
157template< class real_type>
159{
160 public:
161 using value_type = real_type;
169 TridiagInvHMGTI(const thrust::host_vector<real_type>& copyable)
170 {
171 m_size = copyable.size();
172 m_alphas.assign(m_size+1,0.);
173 m_betas.assign(m_size+1,0.);
174 }
180 TridiagInvHMGTI(unsigned size)
181 {
182 m_size = size;
183 m_alphas.assign(m_size+1,0.);
184 m_betas.assign(m_size+1,0.);
185 }
191 void resize(unsigned new_size) {
192 m_size = new_size;
193 m_alphas.resize(m_size+1,0.);
194 m_betas.resize(m_size+1,0.);
195 }
203 void operator()(const dg::TriDiagonal<thrust::host_vector<real_type>>& T, dg::SquareMatrix<real_type>& Tinv)
204 {
205 this->operator()(
206 T.O, // 0 diagonal
207 T.P, // +1 diagonal
208 T.M, // -1 diagonal
209 Tinv);
210 }
217 dg::SquareMatrix<real_type> operator()(const dg::TriDiagonal<thrust::host_vector<real_type>>& T)
218 {
220 this->operator()( T, Tinv);
221 return Tinv;
222 }
233 template<class ContainerType0, class ContainerType1, class ContainerType2>
234 void operator()(const ContainerType0& a, const ContainerType1& b,
235 const ContainerType2& c, dg::SquareMatrix<real_type>& Tinv)
236 {
237 unsigned ss = m_size;
238 Tinv.resize(ss);
239 if( ss == 1)
240 {
241 Tinv(0,0) = 1./b[0];
242 return;
243 }
244 //fill alphas
245 m_alphas[0]=1.0;
246 m_alphas[1]=a[0];
247 for( unsigned i = 2; i<ss+1; i++)
248 {
249 m_alphas[i] = a[i-1]*m_alphas[i-1] - c[i-1]*b[i-2]*m_alphas[i-2];
250 if (m_alphas[i] ==0 && i<ss) {
251 throw dg::Error( dg::Message(_ping_) << "# Failure in alpha["<<i<<"] !");
252 }
253 }
254 if (m_alphas[ss] ==0)
255 throw dg::Error( dg::Message(_ping_) << "# No Inverse of tridiagonal matrix exists !");
256
257 //fill betas
258 m_betas[ss]=1.0;
259 m_betas[ss-1]=a[ss-1];
260 m_betas[0] = m_alphas[ss];
261 for( int i = ss-2; i>0; i--)
262 {
263 m_betas[i] = a[i]*m_betas[i+1] - c[i+1]*b[i]*m_betas[i+2];
264 if (m_betas[i] ==0)
265 {
266 throw dg::Error( dg::Message(_ping_) << "# Failure in beta["<<i<<"] !");
267 }
268 }
269 //Diagonal entries
270 Tinv(0, 0) = 1.0/(a[0]-c[1]*b[0]*m_betas[2]/m_betas[1]);
271 Tinv(ss-1, ss-1) = 1.0/(a[ss-1] -
272 c[ss-1]*b[ss-2]*m_alphas[ss-2]/m_alphas[ss-1]);
273 for( unsigned i=1; i<ss-1; i++)
274 {
275 Tinv( i,i) =
276 1.0/(a[i]-c[i]*b[i-1]*m_alphas[i-1]/m_alphas[i]
277 -c[i+1]*b[i]*m_betas[i+2]/m_betas[i+1]);
278 }
279 //Off-diagonal entries
280 for( unsigned i=0; i<ss; i++)
281 {
282 for( unsigned j=0; j<ss; j++)
283 {
284 Tinv.row_indices[i*ss+j] = j;
285 Tinv.column_indices[i*ss+j] = i;
286 if (i<j) {
287 Tinv(j, i) =
288 sign(j-i)*std::accumulate(std::next(b.begin(),i),
289 std::next(b.begin(),j), 1.,
290 std::multiplies<value_type>())*
291 m_alphas[i]/m_alphas[j]*Tinv.values[j*ss+j];
292 }
293 else if (i>j)
294 {
295 Tinv(j, i) =
296 sign(i-j)*std::accumulate(std::next(c.begin(),j+1),
297 std::next(c.begin(),i+1), 1.,
298 std::multiplies<value_type>())*
299 m_betas[i+1]/m_betas[j+1]*Tinv.values[j*ss+j];
300 }
301 }
302 }
303 }
304 private:
306 int sign(unsigned i)
307 {
308 if (i%2==0) return 1;
309 else return -1;
310 }
311 thrust::host_vector<real_type> m_alphas, m_betas;
312 unsigned m_size;
313};
314
315
324template< class real_type>
326{
327 public:
328 using value_type = real_type;
336 TridiagInvDF(const thrust::host_vector<real_type>& copyable)
337 {
338 m_size = copyable.size();
339 m_phi.assign(m_size,0.);
340 m_theta.assign(m_size,0.);
341 }
347 TridiagInvDF(unsigned size)
348 {
349 m_size = size;
350 m_phi.assign(m_size,0.);
351 m_theta.assign(m_size,0.);
352 }
358 void resize(unsigned new_size) {
359 m_size = new_size;
360 m_phi.resize(m_size,0.);
361 m_theta.resize(m_size,0.);
362 }
370 void operator()(const dg::TriDiagonal<thrust::host_vector<real_type>>& T, dg::SquareMatrix<real_type>& Tinv)
371 {
372 this->operator()(
373 T.O, // 0 diagonal
374 T.P, // +1 diagonal
375 T.M, // -1 diagonal
376 Tinv);
377 }
384 dg::SquareMatrix<real_type> operator()(const dg::TriDiagonal<thrust::host_vector<real_type>>& T)
385 {
387 this->operator()( T, Tinv);
388 return Tinv;
389 }
400 template<class ContainerType0, class ContainerType1, class ContainerType2>
401 void operator()(const ContainerType0& a, const ContainerType1& b,
402 const ContainerType2& c, dg::SquareMatrix<real_type>& Tinv)
403 {
404 Tinv.resize(m_size);
405 value_type helper = 0.0;
406 //fill phi values
407 m_phi[0] = - b[0]/a[0];
408 for( unsigned i = 1; i<m_size; i++)
409 {
410 helper = m_phi[i-1]* c[i] + a[i];
411 if (helper==0) throw dg::Error( dg::Message(_ping_)<< "Failure: Division by zero\n");
412 else m_phi[i] = -b[i]/helper;
413 }
414// m_phi[m_size] = 0.0;
415
416 //fill theta values
417 if (m_size == 1) m_theta[m_size-1] = 0.0;
418 else
419 {
420 m_theta[m_size-1] = - c[m_size-1]/a[m_size-1];
421 for( int i = m_size-2; i>=0; i--)
422 {
423 helper = m_theta[i+1]*b[i] + a[i];
424 if (helper==0) throw dg::Error( dg::Message(_ping_)<< "Failure: Division by zero\n");
425 else m_theta[i] = -c[i]/helper;
426 }
427 }
428// m_theta[0] = 0.0;
429 //Diagonal entries
430 helper = a[0] + b[0]* m_theta[1];
431 if (helper==0) throw dg::Error( dg::Message(_ping_)<< "Failure: No inverse exists\n");
432 else Tinv(0,0) = 1.0/helper;
433
434 if (m_size == 1) helper = a[m_size-1];
435 else helper = a[m_size-1] + c[m_size-1]*m_phi[m_size-2];
436
437 if (helper==0) throw dg::Error( dg::Message(_ping_)<< "Failure: No inverse exists\n");
438 else Tinv( m_size -1 , m_size - 1) = 1.0/helper;
439
440 for( unsigned i=1; i<m_size-1; i++)
441 {
442 helper = a[i] + c[i]*m_phi[i-1] + b[i]* m_theta[i+1];
443 if (helper==0) throw dg::Error( dg::Message(_ping_)<< "Failure: No inverse exists\n");
444 else Tinv(i,i) = 1.0/helper;
445 }
446 //Off-diagonal entries
447 for( unsigned j=0; j<m_size-1; j++) //row index
448 {
449 for (unsigned i=j+1; i<m_size; i++)
450 {
451 Tinv(i,j) = m_theta[i]*Tinv(i-1, j);
452 }
453 }
454 for( unsigned j=1; j<m_size; j++) //row index
455 {
456 for (int i=j-1; i>=0; i--)
457 {
458 Tinv(i,j) = m_phi[i]*Tinv(i+1,j);
459 }
460 }
461 }
462 private:
463 thrust::host_vector<real_type> m_phi, m_theta;
464 unsigned m_size;
465};
466
476template< class real_type>
478{
479 public:
480 using value_type = real_type;
488 TridiagInvD(const thrust::host_vector<real_type>& copyable)
489 {
490 m_size = copyable.size();
491 m_phi.assign(m_size+1,0.);
492 m_theta.assign(m_size+1,0.);
493 }
499 TridiagInvD(unsigned size)
500 {
501 m_size = size;
502 m_phi.assign(m_size+1,0.);
503 m_theta.assign(m_size+1,0.);
504 }
510 void resize(unsigned new_size) {
511 m_size = new_size;
512 m_phi.resize(m_size+1,0.);
513 m_theta.resize(m_size+1,0.);
514 }
522 void operator()(const dg::TriDiagonal<thrust::host_vector<real_type>>& T, dg::SquareMatrix<real_type>& Tinv)
523 {
524 this->operator()(
525 T.O, // 0 diagonal
526 T.P, // +1 diagonal
527 T.M, // -1 diagonal
528 Tinv);
529 }
536 dg::SquareMatrix<real_type> operator()(const dg::TriDiagonal<thrust::host_vector<real_type>>& T)
537 {
539 this->operator()( T, Tinv);
540 return Tinv;
541 }
552 template<class ContainerType0, class ContainerType1, class ContainerType2>
553 void operator()(const ContainerType0& a, const ContainerType1& b,
554 const ContainerType2& c, dg::SquareMatrix<real_type>& Tinv)
555 {
556 Tinv.resize( m_size);
557 unsigned is=0;
558 for( unsigned i = 0; i<m_size+1; i++)
559 {
560 is = m_size - i;
561 if (i==0)
562 {
563 m_theta[0] = 1.;
564 m_phi[is] = 1.;
565 }
566 else if (i==1)
567 {
568 m_theta[1] = a[0];
569 m_phi[is] = a[is];
570 }
571 else
572 {
573 m_theta[i] = a[i-1] * m_theta[i-1] - b[i-2] * c[i-1] * m_theta[i-2];
574 m_phi[is] = a[is] * m_phi[is+1] - b[is] * c[is+1] * m_phi[is+2];
575 }
576 }
577
578 //Compute inverse tridiagonal matrix elements
579 for( unsigned i=0; i<m_size; i++) //row index
580 {
581 for( unsigned j=0; j<m_size; j++) //column index
582 {
583 if (i<j) {
584 Tinv(i,j) =
585 std::accumulate(std::next(b.begin(),i),
586 std::next(b.begin(),j), 1.,
587 std::multiplies<value_type>())*sign(i+j) *
588 m_theta[i] * m_phi[j+1]/m_theta[m_size];
589 }
590 else if (i==j)
591 {
592 Tinv(i,j) = m_theta[i] * m_phi[i+1]/m_theta[m_size];
593 }
594 else // if (i>j)
595 {
596 Tinv(i,j) =
597 std::accumulate(std::next(c.begin(),j+1),
598 std::next(c.begin(),i+1), 1.,
599 std::multiplies<value_type>())*sign(i+j) *
600 m_theta[j] * m_phi[i+1]/m_theta[m_size];
601 }
602 }
603 }
604 }
605 private:
607 int sign(unsigned i)
608 {
609 if (i%2==0) return 1;
610 else return -1;
611 }
612 thrust::host_vector<real_type> m_phi, m_theta;
613 unsigned m_size;
614};
615
627template<class value_type>
628void invert(const dg::TriDiagonal<thrust::host_vector<value_type>>& T,
630{
631 TridiagInvDF<value_type>( T.O.size())(T, Tinv);
632}
644template<class value_type>
646 const dg::TriDiagonal<thrust::host_vector<value_type>>& T)
647{
648 return TridiagInvDF<value_type>( T.O.size())(T);
649}
650
664template<class value_type>
665std::array<value_type, 2> compute_extreme_EV( const dg::TriDiagonal<thrust::host_vector<value_type>>& T)
666{
668 // We use P as "subdiagonal" because it is symmetric and the first element must be on 0 index
669 thrust::host_vector<value_type> evals( T.O), subdiagonal( T.P), Z, work;
670 lapack::stev(LAPACK_COL_MAJOR, 'N', evals, subdiagonal, Z, work);
671 value_type EVmax = dg::blas1::reduce( evals, 0., dg::AbsMax<value_type>());
672 value_type EVmin = dg::blas1::reduce( evals, EVmax, dg::AbsMin<value_type>());
673 return std::array<value_type, 2>{EVmin, EVmax};
674}
675
676
678
679} // namespace mat
680} // namespace dg
void resize(unsigned m, T val=T())
USE THIS ONE Compute the inverse of a general tridiagonal matrix. The algorithm does not rely on the ...
Definition tridiaginv.h:326
void resize(unsigned new_size)
Resize inverse tridiagonal matrix and helper vectors.
Definition tridiaginv.h:358
TridiagInvDF(unsigned size)
Construct from size of vector.
Definition tridiaginv.h:347
void operator()(const dg::TriDiagonal< thrust::host_vector< real_type > > &T, dg::SquareMatrix< real_type > &Tinv)
Compute the inverse of a tridiagonal matrix T.
Definition tridiaginv.h:370
dg::SquareMatrix< real_type > operator()(const dg::TriDiagonal< thrust::host_vector< real_type > > &T)
Compute the inverse of a tridiagonal matrix T.
Definition tridiaginv.h:384
TridiagInvDF(const thrust::host_vector< real_type > &copyable)
Construct from vector.
Definition tridiaginv.h:336
TridiagInvDF()
Allocate nothing, Call construct method before usage.
Definition tridiaginv.h:330
real_type value_type
Definition tridiaginv.h:328
void operator()(const ContainerType0 &a, const ContainerType1 &b, const ContainerType2 &c, dg::SquareMatrix< real_type > &Tinv)
Compute the inverse of a tridiagonal matrix with diagonal vectors a,b,c.
Definition tridiaginv.h:401
Compute the inverse of a general tridiagonal matrix.
Definition tridiaginv.h:478
void operator()(const dg::TriDiagonal< thrust::host_vector< real_type > > &T, dg::SquareMatrix< real_type > &Tinv)
Compute the inverse of a tridiagonal matrix T.
Definition tridiaginv.h:522
void resize(unsigned new_size)
Resize inverse tridiagonal matrix and helper vectors.
Definition tridiaginv.h:510
real_type value_type
Definition tridiaginv.h:480
TridiagInvD(unsigned size)
Construct from size of vector.
Definition tridiaginv.h:499
void operator()(const ContainerType0 &a, const ContainerType1 &b, const ContainerType2 &c, dg::SquareMatrix< real_type > &Tinv)
Compute the inverse of a tridiagonal matrix with diagonal vectors a,b,c.
Definition tridiaginv.h:553
dg::SquareMatrix< real_type > operator()(const dg::TriDiagonal< thrust::host_vector< real_type > > &T)
Compute the inverse of a tridiagonal matrix T.
Definition tridiaginv.h:536
TridiagInvD(const thrust::host_vector< real_type > &copyable)
Construct from vector.
Definition tridiaginv.h:488
TridiagInvD()
Allocate nothing, Call construct method before usage.
Definition tridiaginv.h:482
Compute the inverse of a general tridiagonal matrix.
Definition tridiaginv.h:159
TridiagInvHMGTI(const thrust::host_vector< real_type > &copyable)
Construct from vector.
Definition tridiaginv.h:169
TridiagInvHMGTI(unsigned size)
Construct from size of vector.
Definition tridiaginv.h:180
void operator()(const dg::TriDiagonal< thrust::host_vector< real_type > > &T, dg::SquareMatrix< real_type > &Tinv)
Compute the inverse of a tridiagonal matrix T.
Definition tridiaginv.h:203
void operator()(const ContainerType0 &a, const ContainerType1 &b, const ContainerType2 &c, dg::SquareMatrix< real_type > &Tinv)
Compute the inverse of a tridiagonal matrix with diagonal vectors a,b,c.
Definition tridiaginv.h:234
dg::SquareMatrix< real_type > operator()(const dg::TriDiagonal< thrust::host_vector< real_type > > &T)
Compute the inverse of a tridiagonal matrix T.
Definition tridiaginv.h:217
real_type value_type
Definition tridiaginv.h:161
TridiagInvHMGTI()
Allocate nothing, Call construct method before usage.
Definition tridiaginv.h:163
void resize(unsigned new_size)
Resize inverse tridiagonal matrix and helper vectors.
Definition tridiaginv.h:191
#define _ping_
OutputType reduce(const ContainerType &x, OutputType zero, BinaryOp binary_op, UnaryOp unary_op=UnaryOp())
typename TensorTraits< std::decay_t< Vector > >::value_type get_value_type
std::array< value_type, 2 > compute_extreme_EV(const dg::TriDiagonal< thrust::host_vector< value_type > > &T)
Compute extreme Eigenvalues of a symmetric tridiangular matrix.
Definition tridiaginv.h:665
void compute_Tinv_y(const dg::TriDiagonal< thrust::host_vector< value_type > > &T, thrust::host_vector< value_type > &x, const thrust::host_vector< value_type > &y, value_type a=1., value_type d=0.)
Computes the value of via Thomas algorithm.
Definition tridiaginv.h:124
value_type compute_Tinv_m1(const dg::TriDiagonal< thrust::host_vector< value_type > > &T, unsigned size)
Computes the value of via a Thomas algorithm.
Definition tridiaginv.h:95
void invert(const dg::TriDiagonal< thrust::host_vector< value_type > > &T, dg::SquareMatrix< value_type > &Tinv)
Invert a tridiagonal matrix.
Definition tridiaginv.h:628
Classes for Krylov space approximations of a Matrix-Vector product.