Extension: Matrix functions
#include "dg/matrix/matrix.h"
Loading...
Searching...
No Matches
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 123]
 NdgClasses for Krylov space approximations of a Matrix-Vector product
 Nmat
 CBESSELI0\( f(x) = I_0 (x)\) with \(I_0\) the zeroth order modified Bessel function
 CBesselJ\( f(x) = J_n (x)\) with \(J_n\) the n-th order modified Bessel function
 CConvertsToFunctionalButcherTableauConvert identifiers to their corresponding dg::mat::FunctionalButcherTableau
 CDirectSqrtCauchyShortcut for \(b \approx \sqrt{A} x \) solve directly via sqrt Cauchy combined with PCG inversions
 CExponentialERKStepExponential Runge-Kutta fixed-step time-integration for \( \dot y = A y + g(t,y)\)
 CExponentialStepExponential one step time-integration for \( \dot y = A y \)
 CFunctionalButcherTableauManage coefficients of a functional (extended) Butcher tableau
 CGAMMA0\( f(x) = \Gamma_0 (x) := I_0 (x) exp(x) \) with \(I_0\) the zeroth order modified Bessel function
 CGyrolagK\( f(x) = (-a*x)^n/n! exp(a*x) \)
 CInvSqrtODERight hand side of the square root ODE
 CLaguerreL\( f(x) = L_n (x)\) with \(L_n\) the n-th order Laguerre polynomial
 CMatrixFunctionComputation of \( \vec x = f(A)\vec b\) for self-adjoint positive definite \( A\)
 CMatrixSqrtFast computation of \( \vec x = A^{\pm 1/2}\vec b\) for self-adjoint positive definite \(A\)
 CMCGEXPERIMENTAL Tridiagonalize \(A\) and approximate \(f(A)b \approx R f(\tilde T) e_1\) via CG algorithm. A is self-adjoint in the weights \( W\)
 CMCGFuncEigenEXPERIMENTAL Shortcut for \(x \approx f(A) b \) solve via exploiting first a Krylov projection achieved by the M-CG method and a matrix function computation via Eigen-decomposition
 CPolChargeVarious arbitary wavelength polarization charge operators of delta-f (df) and full-f (ff)
 CPolChargeNEXPERIMENTAL polarization solver class for N
 CSqrtCauchyIntCauchy integral \( \sqrt{A} b= A\frac{ 2 K' \sqrt{m}}{\pi N} \sum_{j=1}^{N} ( w_j^2 I + A)^{-1} c_j d_j b \)
 CTensorEllipticMatrix class that represents the arbitrary polarization operator
 CTridiagInvDCompute the inverse of a general tridiagonal matrix
 CTridiagInvDFUSE THIS ONE Compute the inverse of a general tridiagonal matrix. The algorithm does not rely on the determinant
 CTridiagInvHMGTICompute the inverse of a general tridiagonal matrix
 CUniversalLanczosTridiagonalize \(A\) and approximate \(f(A)b \approx |b|_W V f(T) e_1\) via Lanczos algorithm. A is self-adjoint in the weights \( W\)
 CTensorTraits< mat::PolChargeN< G, M, V > >