|
Extension: Matrix functions
#include "dg/matrix/matrix.h"
|
| ▼Ndg | Classes for Krylov space approximations of a Matrix-Vector product |
| ▼Nmat | |
| CBESSELI0 | \( f(x) = I_0 (x)\) with \(I_0\) the zeroth order modified Bessel function |
| CBesselJ | \( f(x) = J_n (x)\) with \(J_n\) the n-th order modified Bessel function |
| CConvertsToFunctionalButcherTableau | Convert identifiers to their corresponding dg::mat::FunctionalButcherTableau |
| CDirectSqrtCauchy | Shortcut for \(b \approx \sqrt{A} x \) solve directly via sqrt Cauchy combined with PCG inversions |
| CExponentialERKStep | Exponential Runge-Kutta fixed-step time-integration for \( \dot y = A y + g(t,y)\) |
| CExponentialStep | Exponential one step time-integration for \( \dot y = A y \) |
| CFunctionalButcherTableau | Manage coefficients of a functional (extended) Butcher tableau |
| CGAMMA0 | \( f(x) = \Gamma_0 (x) := I_0 (x) exp(x) \) with \(I_0\) the zeroth order modified Bessel function |
| CGyrolagK | \( f(x) = (-a*x)^n/n! exp(a*x) \) |
| CInvSqrtODE | Right hand side of the square root ODE |
| CLaguerreL | \( f(x) = L_n (x)\) with \(L_n\) the n-th order Laguerre polynomial |
| CMatrixFunction | Computation of \( \vec x = f(A)\vec b\) for self-adjoint positive definite \( A\) |
| CMatrixSqrt | Fast computation of \( \vec x = A^{\pm 1/2}\vec b\) for self-adjoint positive definite \(A\) |
| CMCG | EXPERIMENTAL Tridiagonalize \(A\) and approximate \(f(A)b \approx R f(\tilde T) e_1\) via CG algorithm. A is self-adjoint in the weights \( W\) |
| CMCGFuncEigen | EXPERIMENTAL Shortcut for \(x \approx f(A) b \) solve via exploiting first a Krylov projection achieved by the M-CG method and a matrix function computation via Eigen-decomposition |
| CPolCharge | Various arbitary wavelength polarization charge operators of delta-f (df) and full-f (ff) |
| CPolChargeN | EXPERIMENTAL polarization solver class for N |
| CSqrtCauchyInt | Cauchy integral \( \sqrt{A} b= A\frac{ 2 K' \sqrt{m}}{\pi N} \sum_{j=1}^{N} ( w_j^2 I + A)^{-1} c_j d_j b \) |
| CTensorElliptic | Matrix class that represents the arbitrary polarization operator |
| CTridiagInvD | Compute the inverse of a general tridiagonal matrix |
| CTridiagInvDF | USE THIS ONE Compute the inverse of a general tridiagonal matrix. The algorithm does not rely on the determinant |
| CTridiagInvHMGTI | Compute the inverse of a general tridiagonal matrix |
| CUniversalLanczos | Tridiagonalize \(A\) and approximate \(f(A)b \approx |b|_W V f(T) e_1\) via Lanczos algorithm. A is self-adjoint in the weights \( W\) |
| CTensorTraits< mat::PolChargeN< G, M, V > > | |
| CMatrixFunction | |
| Crho_ana |