Cauchy integral \( \sqrt{A} b= A\frac{ 2 K' \sqrt{m}}{\pi N} \sum_{j=1}^{N} ( w_j^2 I + A)^{-1} c_j d_j b \)
More...
|
| SqrtCauchyInt () |
|
| SqrtCauchyInt (const Container ©able) |
| Construct Rhs operator. More...
|
|
template<class ... Params> |
void | construct (Params &&...ps) |
| Perfect forward parameters to one of the constructors. More...
|
|
const double & | w () const |
| The \( w\) in \( ( w^2I + A)^{-1}\). More...
|
|
template<class MatrixType > |
auto | make_denominator (MatrixType &A) const |
|
template<class MatrixType0 , class MatrixType1 , class ContainerType0 , class ContainerType1 > |
void | operator() (MatrixType0 &&A, MatrixType1 &&wAinv, const ContainerType0 &b, ContainerType1 &x, std::array< value_type, 2 > EVs, unsigned steps, int exp=+1) |
| Cauchy integral \( x = \sqrt{A}b = A \frac{ 2 K' \sqrt{m}}{\pi N} \sum_{j=1}^{N} (w_j^2 I + A)^{-1} c_j d_j b \) More...
|
|
template<class Container>
struct dg::mat::SqrtCauchyInt< Container >
Cauchy integral \( \sqrt{A} b= A\frac{ 2 K' \sqrt{m}}{\pi N} \sum_{j=1}^{N} ( w_j^2 I + A)^{-1} c_j d_j b \)
A is the matrix, b is the vector, w is a scalar m is the smallest eigenvalue of A, K' is the conjuated complete elliptic integral and \(c_j\) and \(d_j\) are the jacobi functions
- Note
- If we leave away the first A on the right hand side we approximate the inverse square root.
This class is based on the approach (method 3) of the paper Computing A alpha log(A), and Related Matrix Functions by Contour Integrals by N. Hale et al