Extension: Matrix functions
#include "dg/matrix/matrix.h"
Loading...
Searching...
No Matches
mcg.h
Go to the documentation of this file.
1#pragma once
2
3#include "dg/algorithm.h"
4#include "tridiaginv.h"
5#include "matrixfunction.h"
6
11namespace dg{
12namespace mat{
13
32template< class ContainerType>
33class MCG
34{
35 public:
38 MCG(){}
45 MCG( const ContainerType& copyable, unsigned max_iterations)
46 {
47 m_ap = m_p = m_r = copyable;
48 m_max_iter = max_iterations;
49 set_iter( max_iterations);
50 }
51
54 void set_max( unsigned new_max) {
55 m_max_iter = new_max;
56 set_iter( new_max);
57 }
58
61 unsigned get_max() const {return m_max_iter;}
62
65 void set_verbose( bool verbose){ m_verbose = verbose;}
66
69 value_type get_bnorm() const{return m_bnorm;}
70
72 template<class ...Params>
73 void construct( Params&& ...ps)
74 {
75 //construct and swap
76 *this = MCG( std::forward<Params>( ps)...);
77 }
81 unsigned get_iter() const {return m_iter;}
91 template< class MatrixType, class DiaMatrixType, class ContainerType0,
92 class ContainerType1, class ContainerType2>
93 void Ry( MatrixType&& A, const DiaMatrixType& T,
94 const ContainerType0& y, ContainerType1& x,
95 const ContainerType2& b)
96 {
97 dg::blas1::copy(0., x);
98
99 dg::blas1::copy( b, m_r);
100
101 dg::blas1::copy( m_r, m_p );
102
103 dg::blas1::axpby( y[0], m_r, 1., x); //Compute x= R y
104 for ( unsigned i=0; i<y.size()-1; i++)
105 {
106 dg::blas2::symv( std::forward<MatrixType>(A), m_p, m_ap);
107 value_type alphainv = i==0 ? T.O[i] :
108 T.O[i] + T.P[i-1];
109 value_type beta = -T.P[i]/alphainv;
110 dg::blas1::axpby( -1./alphainv, m_ap, 1., m_r);
111 dg::blas1::axpby(1., m_r, beta, m_p );
112 dg::blas1::axpby( y[i+1], m_r, 1., x); //Compute x= R y
113 }
114 }
139 template< class MatrixType, class ContainerType0, class ContainerType1>
141 MatrixType&& A, const ContainerType0& b,
142 const ContainerType1& weights, value_type eps = 1e-12,
143 value_type nrmb_correction = 1., value_type res_fac = 1.)
144 {
145#ifdef MPI_VERSION
146 int rank;
147 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
148#endif //MPI
149 value_type nrmzr_old = dg::blas2::dot( b, weights, b);
150 value_type nrmb = sqrt(nrmzr_old);
151 m_bnorm = nrmb;
152 if( m_verbose)
153 {
154 DG_RANK0 std::cout << "# Norm of b "<<nrmb <<"\n";
155 DG_RANK0 std::cout << "# Res factor "<<res_fac <<"\n";
156 DG_RANK0 std::cout << "# Residual errors: \n";
157 }
158 if( nrmb == 0)
159 {
160 set_iter(1);
161 return m_TH;
162 }
163 dg::blas1::copy( b, m_r);
164 dg::blas1::copy( m_r, m_p );
165
166 value_type alpha = 0, beta = 0, nrmzr_new = 0, alpha_old = 0., beta_old = 0.;
167 for( unsigned i=0; i<m_max_iter; i++)
168 {
169 alpha_old = alpha, beta_old = beta;
170 dg::blas2::symv( std::forward<MatrixType>(A), m_p, m_ap);
171 alpha = nrmzr_old /dg::blas2::dot( m_p, weights, m_ap);
172 dg::blas1::axpby( -alpha, m_ap, 1., m_r);
173 nrmzr_new = dg::blas2::dot( m_r, weights, m_r);
174 beta = nrmzr_new/nrmzr_old;
175 if(m_verbose)
176 {
177 DG_RANK0 std::cout << "# ||r||_W = " << sqrt(nrmzr_new) << "\tat i = " << i << "\n";
178 }
179 if( i == 0)
180 {
181 m_TH.M[i] = 0.;
182 m_TH.O[i] = 1./alpha;
183 m_TH.P[i] = -beta/alpha;
184 }
185 else
186 {
187 m_TH.M[i] = -1./alpha_old;
188 m_TH.O[i] = 1./alpha + beta_old/alpha_old;
189 m_TH.P[i] = -beta/alpha;
190 }
191 if( res_fac*sqrt( nrmzr_new)
192 < eps*(nrmb + nrmb_correction))
193 {
194 set_iter(i+1);
195 break;
196 }
197 dg::blas1::axpby(1., m_r, beta, m_p );
198 nrmzr_old=nrmzr_new;
199 }
200
201 return m_TH;
202 }
208 thrust::host_vector<value_type> make_e1( ) {
209 thrust::host_vector<value_type> e1H(m_iter, 0.);
210 e1H[0] = 1.;
211 return e1H;
212 }
213 private:
216 void set_iter( unsigned new_iter) {
217 // The alignment (which is the pitch of the underlying values)
218 // of m_max_iter preserves the existing elements
219 m_TH.resize(new_iter),
220 m_iter = new_iter;
221 }
222 ContainerType m_r, m_ap, m_p;
223 unsigned m_max_iter, m_iter;
225 bool m_verbose = false;
226 value_type m_bnorm = 0.;
227};
228
247template<class Container>
249{
250 public:
252 using HVec = dg::HVec;
261 MCGFuncEigen( const Container& copyable, unsigned max_iterations)
262 {
263 m_e1H.assign(max_iterations, 0.);
264 m_e1H[0] = 1.;
265 m_yH.assign(max_iterations, 1.);
266 m_mcg.construct(copyable, max_iterations);
267 }
269 template<class ...Params>
270 void construct( Params&& ...ps)
271 {
272 //construct and swap
273 *this = MCGFuncEigen( std::forward<Params>( ps)...);
274 }
290 template < class MatrixType, class ContainerType0, class ContainerType1 ,
291 class ContainerType2, class UnaryOp>
292 unsigned operator()(ContainerType0& x, UnaryOp f,
293 MatrixType&& A, const ContainerType1& b,
294 const ContainerType2& weights, value_type eps,
295 value_type nrmb_correction, value_type res_fac )
296 {
297 if( sqrt(dg::blas2::dot(b, weights, b)) == 0)
298 {
299 dg::blas1::copy( b, x);
300 return 0;
301 }
302 //Compute x (with initODE with gemres replacing cg invert)
303 m_TH = m_mcg(std::forward<MatrixType>(A), b, weights, eps,
304 nrmb_correction, res_fac);
305 unsigned iter = m_mcg.get_iter();
306 //resize
307 m_alpha.resize(iter);
308 m_delta.resize(iter,1.);
309 m_beta.resize(iter-1);
310 m_EHt.resize(iter);
311 m_e1H.resize(iter, 0.);
312 m_e1H[0] = 1.;
313 m_yH.resize(iter);
314 m_work.resize( 2*iter-2);
315 //fill diagonal entries of similarity transformed T matrix (now symmetric)
316 for(unsigned i = 0; i<iter; i++)
317 {
318 m_alpha[i] = m_TH.O[i];
319 if (i<iter-1) {
320 if (m_TH.P[i] > 0.) m_beta[i] = sqrt(m_TH.P[i]*m_TH.M[i+1]); // sqrt(b_i * c_i)
321 else if (m_TH.P[i] < 0.) m_beta[i] = -sqrt(m_TH.P[i]*m_TH.M[i+1]); //-sqrt(b_i * c_i)
322 else m_beta[i] = 0.;
323 }
324 if (i>0) m_delta[i] = m_delta[i-1]*sqrt(m_TH.M[i]/m_TH.P[i-1]);
325 }
326 //Compute Eigendecomposition
327 lapack::stev(LAPACK_COL_MAJOR, 'V', m_alpha, m_beta, m_EHt.data(), m_work);
328 m_EH = m_EHt.transpose();
329 //Compute f(T) e1 = D E f(Lambda) E^t D^{-1} e1
330 dg::blas1::pointwiseDivide(m_e1H, m_delta, m_e1H);
331 dg::blas2::symv(m_EHt, m_e1H, m_yH);
332 dg::blas1::transform(m_alpha, m_e1H, [f] (double x){
333 try{
334 return f(x);
335 }
336 catch(boost::exception& e) //catch boost overflow error
337 {
338 return 0.;
339 }
340 });
341 dg::blas1::pointwiseDot(m_e1H, m_yH, m_e1H);
342 dg::blas2::symv(m_EH, m_e1H, m_yH);
343 dg::blas1::pointwiseDot(m_yH, m_delta, m_yH);
344 //Compute x = R f(T) e_1
345 m_mcg.Ry(std::forward<MatrixType>(A), m_TH, m_yH, x, b);
346
347 return iter;
348 }
349 private:
350 HVec m_e1H, m_yH;
353 thrust::host_vector<value_type> m_alpha, m_beta, m_delta, m_work;
355
356};
357} //namespace mat
358} //namespace dg
359
const std::vector< value_type > & data() const
void resize(unsigned m, T val=T())
SquareMatrix transpose() const
EXPERIMENTAL Shortcut for solve via exploiting first a Krylov projection achieved by the M-CG method...
Definition mcg.h:249
dg::get_value_type< Container > value_type
Definition mcg.h:251
dg::HVec HVec
Definition mcg.h:252
void construct(Params &&...ps)
Perfect forward parameters to one of the constructors.
Definition mcg.h:270
MCGFuncEigen()
Allocate nothing, Call construct method before usage.
Definition mcg.h:254
MCGFuncEigen(const Container &copyable, unsigned max_iterations)
Construct MCGFuncEigen.
Definition mcg.h:261
unsigned operator()(ContainerType0 &x, UnaryOp f, MatrixType &&A, const ContainerType1 &b, const ContainerType2 &weights, value_type eps, value_type nrmb_correction, value_type res_fac)
Compute via M-CG method and Eigen decomposition.
Definition mcg.h:292
EXPERIMENTAL Tridiagonalize and approximate via CG algorithm. A is self-adjoint in the weights .
Definition mcg.h:34
value_type get_bnorm() const
Norm of b from last call to operator()
Definition mcg.h:69
void set_verbose(bool verbose)
Set or unset debugging output during iterations.
Definition mcg.h:65
unsigned get_max() const
Get the current maximum number of iterations.
Definition mcg.h:61
thrust::host_vector< value_type > make_e1()
Return the vector with size get_iter()
Definition mcg.h:208
void Ry(MatrixType &&A, const DiaMatrixType &T, const ContainerType0 &y, ContainerType1 &x, const ContainerType2 &b)
Compute x = R y.
Definition mcg.h:93
dg::get_value_type< ContainerType > value_type
Definition mcg.h:36
void construct(Params &&...ps)
Perfect forward parameters to one of the constructors.
Definition mcg.h:73
const dg::TriDiagonal< thrust::host_vector< value_type > > & operator()(MatrixType &&A, const ContainerType0 &b, const ContainerType1 &weights, value_type eps=1e-12, value_type nrmb_correction=1., value_type res_fac=1.)
Tridiagonalize the system using CG.
Definition mcg.h:140
void set_max(unsigned new_max)
Set the maximum number of iterations.
Definition mcg.h:54
MCG()
Allocate nothing, Call construct method before usage.
Definition mcg.h:38
MCG(const ContainerType &copyable, unsigned max_iterations)
Allocate memory for the mcg method.
Definition mcg.h:45
unsigned get_iter() const
Get the number of iterations in the last call to operator() (size of T)
Definition mcg.h:81
void copy(const ContainerTypeIn &source, ContainerTypeOut &target)
void axpby(value_type alpha, const ContainerType1 &x, value_type1 beta, ContainerType &y)
void pointwiseDot(value_type alpha, const ContainerType1 &x1, const ContainerType2 &x2, value_type1 beta, ContainerType &y)
void transform(const ContainerType1 &x, ContainerType &y, UnaryOp op)
void pointwiseDivide(value_type alpha, const ContainerType1 &x1, const ContainerType2 &x2, value_type1 beta, ContainerType &y)
auto dot(const ContainerType1 &x, const MatrixType &m, const ContainerType2 &y)
void symv(MatrixType &&M, const ContainerType1 &x, ContainerType2 &y)
typename TensorTraits< std::decay_t< Vector > >::value_type get_value_type
thrust::host_vector< double > HVec
Classes for Krylov space approximations of a Matrix-Vector product.
void resize(unsigned size)
#define DG_RANK0