3#include "dg/algorithm.h"
32template<
class ContainerType>
45 MCG(
const ContainerType& copyable,
unsigned max_iterations)
47 m_ap = m_p = m_r = copyable;
48 m_max_iter = max_iterations;
49 set_iter( max_iterations);
61 unsigned get_max()
const {
return m_max_iter;}
72 template<
class ...Params>
76 *
this =
MCG( std::forward<Params>( ps)...);
91 template<
class MatrixType,
class DiaMatrixType,
class ContainerType0,
92 class ContainerType1,
class ContainerType2>
93 void Ry( MatrixType&& A,
const DiaMatrixType& T,
94 const ContainerType0&
y, ContainerType1& x,
95 const ContainerType2& b)
104 for (
unsigned i=0; i<
y.size()-1; i++)
139 template<
class MatrixType,
class ContainerType0,
class ContainerType1>
141 MatrixType&& A,
const ContainerType0& b,
142 const ContainerType1& weights,
value_type eps = 1e-12,
147 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
154 DG_RANK0 std::cout <<
"# Norm of b "<<nrmb <<
"\n";
155 DG_RANK0 std::cout <<
"# Res factor "<<res_fac <<
"\n";
156 DG_RANK0 std::cout <<
"# Residual errors: \n";
166 value_type alpha = 0, beta = 0, nrmzr_new = 0, alpha_old = 0., beta_old = 0.;
167 for(
unsigned i=0; i<m_max_iter; i++)
169 alpha_old = alpha, beta_old = beta;
174 beta = nrmzr_new/nrmzr_old;
177 DG_RANK0 std::cout <<
"# ||r||_W = " << sqrt(nrmzr_new) <<
"\tat i = " << i <<
"\n";
182 m_TH.
O[i] = 1./alpha;
183 m_TH.
P[i] = -beta/alpha;
187 m_TH.
M[i] = -1./alpha_old;
188 m_TH.
O[i] = 1./alpha + beta_old/alpha_old;
189 m_TH.
P[i] = -beta/alpha;
191 if( res_fac*sqrt( nrmzr_new)
192 < eps*(nrmb + nrmb_correction))
209 thrust::host_vector<value_type> e1H(m_iter, 0.);
216 void set_iter(
unsigned new_iter) {
222 ContainerType m_r, m_ap, m_p;
223 unsigned m_max_iter, m_iter;
225 bool m_verbose =
false;
247template<
class Container>
263 m_e1H.assign(max_iterations, 0.);
265 m_yH.assign(max_iterations, 1.);
266 m_mcg.
construct(copyable, max_iterations);
269 template<
class ...Params>
290 template <
class MatrixType,
class ContainerType0,
class ContainerType1 ,
291 class ContainerType2,
class UnaryOp>
293 MatrixType&& A,
const ContainerType1& b,
294 const ContainerType2& weights,
value_type eps,
303 m_TH = m_mcg(std::forward<MatrixType>(A), b, weights, eps,
304 nrmb_correction, res_fac);
307 m_alpha.resize(iter);
308 m_delta.resize(iter,1.);
309 m_beta.resize(iter-1);
311 m_e1H.resize(iter, 0.);
314 m_work.resize( 2*iter-2);
316 for(
unsigned i = 0; i<iter; i++)
318 m_alpha[i] = m_TH.
O[i];
320 if (m_TH.
P[i] > 0.) m_beta[i] = sqrt(m_TH.
P[i]*m_TH.
M[i+1]);
321 else if (m_TH.
P[i] < 0.) m_beta[i] = -sqrt(m_TH.
P[i]*m_TH.
M[i+1]);
324 if (i>0) m_delta[i] = m_delta[i-1]*sqrt(m_TH.
M[i]/m_TH.
P[i-1]);
327 lapack::stev(LAPACK_COL_MAJOR,
'V', m_alpha, m_beta, m_EHt.
data(), m_work);
336 catch(boost::exception& e)
345 m_mcg.
Ry(std::forward<MatrixType>(A), m_TH, m_yH,
x, b);
353 thrust::host_vector<value_type> m_alpha, m_beta, m_delta, m_work;
const std::vector< value_type > & data() const
void resize(unsigned m, T val=T())
SquareMatrix transpose() const
EXPERIMENTAL Shortcut for solve via exploiting first a Krylov projection achieved by the M-CG method...
Definition mcg.h:249
dg::get_value_type< Container > value_type
Definition mcg.h:251
dg::HVec HVec
Definition mcg.h:252
void construct(Params &&...ps)
Perfect forward parameters to one of the constructors.
Definition mcg.h:270
MCGFuncEigen()
Allocate nothing, Call construct method before usage.
Definition mcg.h:254
MCGFuncEigen(const Container ©able, unsigned max_iterations)
Construct MCGFuncEigen.
Definition mcg.h:261
unsigned operator()(ContainerType0 &x, UnaryOp f, MatrixType &&A, const ContainerType1 &b, const ContainerType2 &weights, value_type eps, value_type nrmb_correction, value_type res_fac)
Compute via M-CG method and Eigen decomposition.
Definition mcg.h:292
EXPERIMENTAL Tridiagonalize and approximate via CG algorithm. A is self-adjoint in the weights .
Definition mcg.h:34
value_type get_bnorm() const
Norm of b from last call to operator()
Definition mcg.h:69
void set_verbose(bool verbose)
Set or unset debugging output during iterations.
Definition mcg.h:65
unsigned get_max() const
Get the current maximum number of iterations.
Definition mcg.h:61
thrust::host_vector< value_type > make_e1()
Return the vector with size get_iter()
Definition mcg.h:208
void Ry(MatrixType &&A, const DiaMatrixType &T, const ContainerType0 &y, ContainerType1 &x, const ContainerType2 &b)
Compute x = R y.
Definition mcg.h:93
dg::get_value_type< ContainerType > value_type
Definition mcg.h:36
void construct(Params &&...ps)
Perfect forward parameters to one of the constructors.
Definition mcg.h:73
const dg::TriDiagonal< thrust::host_vector< value_type > > & operator()(MatrixType &&A, const ContainerType0 &b, const ContainerType1 &weights, value_type eps=1e-12, value_type nrmb_correction=1., value_type res_fac=1.)
Tridiagonalize the system using CG.
Definition mcg.h:140
void set_max(unsigned new_max)
Set the maximum number of iterations.
Definition mcg.h:54
MCG()
Allocate nothing, Call construct method before usage.
Definition mcg.h:38
MCG(const ContainerType ©able, unsigned max_iterations)
Allocate memory for the mcg method.
Definition mcg.h:45
unsigned get_iter() const
Get the number of iterations in the last call to operator() (size of T)
Definition mcg.h:81
void copy(const ContainerTypeIn &source, ContainerTypeOut &target)
void axpby(value_type alpha, const ContainerType1 &x, value_type1 beta, ContainerType &y)
void pointwiseDot(value_type alpha, const ContainerType1 &x1, const ContainerType2 &x2, value_type1 beta, ContainerType &y)
void transform(const ContainerType1 &x, ContainerType &y, UnaryOp op)
void pointwiseDivide(value_type alpha, const ContainerType1 &x1, const ContainerType2 &x2, value_type1 beta, ContainerType &y)
auto dot(const ContainerType1 &x, const MatrixType &m, const ContainerType2 &y)
void symv(MatrixType &&M, const ContainerType1 &x, ContainerType2 &y)
typename TensorTraits< std::decay_t< Vector > >::value_type get_value_type
thrust::host_vector< double > HVec
Classes for Krylov space approximations of a Matrix-Vector product.
void resize(unsigned size)