Extension: Geometries
#include "dg/geometries/geometries.h"
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 1234]
 Ndg
 Ngeo
 Ncircular
 NguenterContains the Guenter type flux functions
 NmodA modification flux function
 NpolynomialA polynomial approximation type flux function
 NsolovevContains the solovev state type flux function
 NtaylorContains the Cerfon Taylor state type flux functions (using boost)
 CaCylindricalFunctorRepresent functions written in cylindrical coordinates that are independent of the angle phi serving as both 2d and 3d functions
 CaRealGenerator2dThe abstract generator base class
 CaRealGeneratorX2dThe abstract generator base class
 CBFieldP\( B^\varphi = R_0I/R^2\)
 CBFieldR\( B^R = R_0\psi_Z /R\)
 CBFieldT\( B^{\theta} = B^R\partial_R\theta + B^Z\partial_Z\theta\)
 CBFieldZ\( B^Z = -R_0\psi_R /R\)
 CBHatP\( \hat b^\varphi = B^\varphi/|B|\)
 CBHatPR\( \partial_R \hat b^\varphi\)
 CBHatPZ\( \partial_Z \hat b^\varphi\)
 CBHatR\( b^R = B^R/|B|\)
 CBHatRR\( \partial_R b^R\)
 CBHatRZ\( \partial_Z b^R\)
 CBHatZ\( b^Z = B^Z/|B|\)
 CBHatZR\( \partial_R b^Z\)
 CBHatZZ\( \partial_Z b^Z\)
 CBmodule\( |B| = R_0\sqrt{I^2+(\nabla\psi)^2}/R \)
 CBR\( \frac{\partial |B| }{ \partial R} \)
 CBZ\( \frac{\partial |B| }{ \partial Z} \)
 CConstant\( f(x,y) = c\)
 CCurvatureKappaRApproximate \( \mathcal{K}^{R}_{\vec{\kappa}}=0 \)
 CCurvatureKappaZApproximate \( \mathcal{K}^{Z}_{\vec{\kappa}} \)
 CCurvatureNablaBRApproximate \( \mathcal{K}^{R}_{\nabla B} \)
 CCurvatureNablaBZApproximate \( \mathcal{K}^{Z}_{\nabla B} \)
 CCylindricalFunctorsLvl1This struct bundles a function and its first derivatives
 CCylindricalFunctorsLvl2This struct bundles a function and its first and second derivatives
 CCylindricalSymmTensorLvl1
 CCylindricalVectorLvl0
 CCylindricalVectorLvl1This struct bundles a vector field and its divergence
 CDivb\( \nabla \cdot \vec b \)
 CDivCurvatureKappaApproximate \( \vec{\nabla}\cdot \mathcal{K}_{\vec{\kappa}} \)
 CDivCurvatureNablaBApproximate \( \vec{\nabla}\cdot \mathcal{K}_{\nabla B} \)
 CDivLiseikinXThe x-component of the divergence of the Liseikin monitor metric
 CDivLiseikinYThe y-component of the divergence of the Liseikin monitor metric
 CDivVVP\( \nabla\cdot\left( \frac{ \hat b }{\hat b^\varphi}\right)\)
 CDSClass for the evaluation of parallel derivatives
 CDSPGeneratorA transformed field grid generator
 CFieldalignedCreate and manage interpolation matrices from fieldline integration
 CFluxGeneratorA symmetry flux generator
 CFluxSurfaceAverageFlux surface average (differential volume average) over quantity \( \langle f\rangle(\psi_0) = \frac{1}{A} \int dR dZ \delta(\psi_p(R,Z)-\psi_0) f(R,Z)H(R,Z) \)
 CFluxSurfaceIntegralFlux surface integral of the form \( \int dR dZ f(R,Z) \delta(\psi_p(R,Z)-\psi_0) g(R,Z) \)
 CFluxVolumeIntegralFlux volume integral of the form \( \int dR dZ f(R,Z) \Theta(\psi_p(R,Z)-\psi_0) g(R,Z) \)
 CGradLnB\( \nabla_\parallel \ln{(B)} \)
 CHectorThe High PrEcision Conformal grid generaTOR
 CHooInertia factor \( \mathcal I_0 = B^2/(R_0^2|\nabla\psi_p|^2)\)
 CInvB\( |B|^{-1} = R/R_0\sqrt{I^2+(\nabla\psi)^2} \)
 CLaplacePsip\( \Delta\psi_p = \psi_R/R + \psi_{RR}+\psi_{ZZ} \)
 CLiseikin_XXThe xx-component of the Liseikin monitor metric
 CLiseikin_XYThe xy-component of the Liseikin monitor metric
 CLiseikin_YYThe yy-component of the Liseikin monitor metric
 CLnB\( \ln{|B|} \)
 CLogPolarGeneratorLog Polar coordinates (conformal)
 CMagneticFieldParametersMeta-data about the magnetic field in particular the flux function
 CNablaPsiInvA weight function for the Hector algorithm
 CNablaPsiInvXDerivative of the weight function
 CNablaPsiInvYDerivative of the weight function
 CPeriodifyThis function uses the dg::Grid2d::shift member to extend another function beyond the grid boundaries
 CPolarGeneratorPolar coordinates
 CRealCurvilinearGrid2dA two-dimensional grid based on curvilinear coordinates
 CRealCurvilinearGridX2dA two-dimensional grid based on curvilinear coordinates
 CRealCurvilinearMPIGrid2dA two-dimensional MPI grid based on curvilinear coordinates
 CRealCurvilinearProductGrid3dA 2x1 curvilinear product space grid
 CRealCurvilinearProductGridX3dA three-dimensional grid based on curvilinear coordinates
 CRealCurvilinearProductMPIGrid3dA 2x1 curvilinear product space MPI grid
 CRealCurvilinearRefinedGridX2dA two-dimensional grid based on curvilinear coordinates
 CRealCurvilinearRefinedProductGridX3dA three-dimensional grid based on curvilinear coordinates
 CRealCylindricalFunctorInject both 2d and 3d operator() to a 2d functor
 CRhoP
 CRibeiroA two-dimensional grid based on "almost-conformal" coordinates by Ribeiro and Scott 2010
 CRibeiroFluxGeneratorSame as the Ribeiro class just but uses psi as a flux label directly
 CRibeiroXA two-dimensional grid based on "almost-conformal" coordinates by Ribeiro and Scott 2010
 CSafetyFactorEvaluation of the safety factor q based on direct integration of \( q(\psi_0) = \frac{1}{2\pi} \int d\Theta \frac{B^\varphi}{B^\Theta} \)
 CSafetyFactorAverageClass for the evaluation of the safety factor q based on a flux-surface integral \( q(\psi_0) = \frac{1}{2\pi} \int dRdZ \frac{I(\psi_p)}{R} \delta(\psi_p - \psi_0)H(R,Z) \)
 CScalarProductReturn scalar product of two vector fields \( v_0w_0 + v_1w_1 + v_2w_2\)
 CSeparatrixOrthogonalChoose points on separatrix and construct grid from there
 CSeparatrixOrthogonalAdaptorAn Adaptor to use SeparatrixOrthogonal as aGenerator2d instead of aGeneratorX2d
 CSimpleOrthogonalGenerate a simple orthogonal grid
 CSquareNormReturn norm of scalar product of two vector fields \( \sqrt{v_0w_0 + v_1w_1 + v_2w_2}\)
 CTokamakMagneticFieldA tokamak field as given by R0, Psi and Ipol plus Meta-data like shape and equilibrium
 CTopology1dHelper class for construction
 CTrueCurvatureKappaPTrue \( \mathcal{K}^\varphi_{\vec{\kappa}} \)
 CTrueCurvatureKappaRTrue \( \mathcal{K}^R_{\vec{\kappa}} \)
 CTrueCurvatureKappaZTrue \( \mathcal{K}^Z_{\vec{\kappa}} \)
 CTrueCurvatureNablaBPTrue \( \mathcal{K}^{\varphi}_{\nabla B} \)
 CTrueCurvatureNablaBRTrue \( \mathcal{K}^{R}_{\nabla B} \)
 CTrueCurvatureNablaBZTrue \( \mathcal{K}^{Z}_{\nabla B} \)
 CTrueDivCurvatureKappaTrue \( \vec{\nabla}\cdot \mathcal{K}_{\vec{\kappa}} \)
 CTrueDivCurvatureNablaBTrue \( \vec{\nabla}\cdot \mathcal{K}_{\nabla B} \)
 CWallDirectionDetermine if poloidal field points towards or away from the nearest wall
 CWallFieldlineCoordinateNormalized coordinate relative to wall along fieldline in phi or s coordinate
 CWallFieldlineDistanceDistance to wall along fieldline in phi or s coordinate
 CZCutter\( f(R,Z)= \begin{cases} 0 \text{ if } Z < Z_X \\ 1 \text{ else } \end{cases} \)