|
Extension: Geometries
#include "dg/geometries/geometries.h"
|
| ▼Ndg | |
| ▼Ngeo | |
| ►Ncircular | |
| ►Nguenter | Contains the Guenter type flux functions |
| ►Nmod | A modification flux function |
| ►Npolynomial | A polynomial approximation type flux function |
| ►Nsolovev | Contains the solovev state type flux function |
| ►Ntaylor | Contains the Cerfon Taylor state type flux functions |
| CaCylindricalFunctor | Represent functions written in cylindrical coordinates that are independent of the angle phi serving as both 2d and 3d functions |
| CaRealGenerator2d | The abstract generator base class |
| CaRealGeneratorX2d | The abstract generator base class |
| CBFieldP | \( B^\varphi = R_0I/R^2\) |
| CBFieldR | \( B^R = R_0\psi_Z /R\) |
| CBFieldT | \( B^{\theta} = B^R\partial_R\theta + B^Z\partial_Z\theta\) |
| CBFieldZ | \( B^Z = -R_0\psi_R /R\) |
| CBHatP | \( \hat b^\varphi = B^\varphi/|B|\) |
| CBHatPR | \( \partial_R \hat b^\varphi\) |
| CBHatPZ | \( \partial_Z \hat b^\varphi\) |
| CBHatR | \( b^R = B^R/|B|\) |
| CBHatRR | \( \partial_R b^R\) |
| CBHatRZ | \( \partial_Z b^R\) |
| CBHatZ | \( b^Z = B^Z/|B|\) |
| CBHatZR | \( \partial_R b^Z\) |
| CBHatZZ | \( \partial_Z b^Z\) |
| CBmodule | \( |B| = R_0\sqrt{I^2+(\nabla\psi)^2}/R \) |
| CBR | \( \frac{\partial |B| }{ \partial R} \) |
| CBZ | \( \frac{\partial |B| }{ \partial Z} \) |
| CConstant | \( f(x,y) = c\) |
| CCurvatureKappaR | Approximate \( \mathcal{K}^{R}_{\vec{\kappa}}=0 \) |
| CCurvatureKappaZ | Approximate \( \mathcal{K}^{Z}_{\vec{\kappa}} \) |
| CCurvatureNablaBR | Approximate \( \mathcal{K}^{R}_{\nabla B} \) |
| CCurvatureNablaBZ | Approximate \( \mathcal{K}^{Z}_{\nabla B} \) |
| CCylindricalFunctorsLvl1 | This struct bundles a function and its first derivatives |
| CCylindricalFunctorsLvl2 | This struct bundles a function and its first and second derivatives |
| CCylindricalSymmTensorLvl1 | |
| CCylindricalVectorLvl0 | |
| CCylindricalVectorLvl1 | This struct bundles a vector field and its divergence |
| CDivb | \( \nabla \cdot \vec b \) |
| CDivCurvatureKappa | Approximate \( \vec{\nabla}\cdot \mathcal{K}_{\vec{\kappa}} \) |
| CDivCurvatureNablaB | Approximate \( \vec{\nabla}\cdot \mathcal{K}_{\nabla B} \) |
| CDivLiseikinX | The x-component of the divergence of the Liseikin monitor metric |
| CDivLiseikinY | The y-component of the divergence of the Liseikin monitor metric |
| CDivVVP | \( \nabla\cdot\left( \frac{ \hat b }{\hat b^\varphi}\right)\) |
| CDS | Class for the evaluation of parallel derivatives |
| CDSPGenerator | A transformed field grid generator |
| CFieldaligned | Create and manage interpolation matrices from fieldline integration |
| CFluxGenerator | A symmetry flux generator |
| CFluxSurfaceAverage | Flux surface average (differential volume average) over quantity \( \langle f\rangle(\psi_0) = \frac{1}{A} \int dR dZ \delta(\psi_p(R,Z)-\psi_0) f(R,Z)H(R,Z) \) |
| CFluxSurfaceIntegral | Flux surface integral of the form \( \int dR dZ f(R,Z) \delta(\psi_p(R,Z)-\psi_0) g(R,Z) \) |
| CFluxVolumeIntegral | Flux volume integral of the form \( \int dR dZ f(R,Z) \Theta(\psi_p(R,Z)-\psi_0) g(R,Z) \) |
| CGradLnB | \( \nabla_\parallel \ln{(B)} \) |
| CHector | The High PrEcision Conformal grid generaTOR |
| CHoo | Inertia factor \( \mathcal I_0 = B^2/(R_0^2|\nabla\psi_p|^2)\) |
| CInvB | \( |B|^{-1} = R/R_0\sqrt{I^2+(\nabla\psi)^2} \) |
| CLaplacePsip | \( \Delta\psi_p = \psi_R/R + \psi_{RR}+\psi_{ZZ} \) |
| CLiseikin_XX | The xx-component of the Liseikin monitor metric |
| CLiseikin_XY | The xy-component of the Liseikin monitor metric |
| CLiseikin_YY | The yy-component of the Liseikin monitor metric |
| CLnB | \( \ln{|B|} \) |
| CLogPolarGenerator | Log Polar coordinates (conformal) |
| CMagneticFieldParameters | Meta-data about the magnetic field in particular the flux function |
| CNablaPsiInv | A weight function for the Hector algorithm |
| CNablaPsiInvX | Derivative of the weight function |
| CNablaPsiInvY | Derivative of the weight function |
| CPeriodify | This function extends another function beyond the grid boundaries |
| CPolarGenerator | Polar coordinates |
| CRealCurvilinearGrid2d | A two-dimensional grid based on curvilinear coordinates |
| CRealCurvilinearGridX2d | A two-dimensional grid based on curvilinear coordinates |
| CRealCurvilinearMPIGrid2d | A two-dimensional MPI grid based on curvilinear coordinates |
| CRealCurvilinearProductGrid3d | A 2x1 curvilinear product space grid |
| CRealCurvilinearProductGridX3d | A three-dimensional grid based on curvilinear coordinates |
| CRealCurvilinearProductMPIGrid3d | A 2x1 curvilinear product space MPI grid |
| CRealCurvilinearRefinedGridX2d | A two-dimensional grid based on curvilinear coordinates |
| CRealCurvilinearRefinedProductGridX3d | A three-dimensional grid based on curvilinear coordinates |
| CRealCylindricalFunctor | Inject both 2d and 3d operator() to a 2d functor |
| CRhoP | \( \sqrt{1. - \psi_p/ \psi_{p,O}} \) |
| CRibeiro | A two-dimensional grid based on "almost-conformal" coordinates by Ribeiro and Scott 2010 |
| CRibeiroFluxGenerator | Same as the Ribeiro class but uses \( \zeta = f_0 (\psi_p - \psi_0)\) as a flux label directly |
| CRibeiroX | A two-dimensional grid based on "almost-conformal" coordinates by Ribeiro and Scott 2010 |
| CSafetyFactor | Evaluation of the safety factor q based on direct integration of \( q(\psi_0) = \frac{1}{2\pi} \int d\Theta \frac{B^\varphi}{B^\Theta} \) |
| CSafetyFactorAverage | Class for the evaluation of the safety factor q based on a flux-surface integral \( q(\psi_0) = \frac{1}{2\pi} \int dRdZ \frac{I(\psi_p)}{R} \delta(\psi_p - \psi_0)H(R,Z) \) |
| CScalarProduct | Return scalar product of two vector fields \( v_0w_0 + v_1w_1 + v_2w_2\) |
| CSeparatrixOrthogonal | Choose points on separatrix and construct grid from there |
| CSeparatrixOrthogonalAdaptor | An Adaptor to use SeparatrixOrthogonal as aGenerator2d instead of aGeneratorX2d |
| CSimpleOrthogonal | Generate a simple orthogonal grid |
| CSquareNorm | Return norm of scalar product of two vector fields \( \sqrt{v_0w_0 + v_1w_1 + v_2w_2}\) |
| CTokamakMagneticField | A tokamak field as given by R0, Psi and Ipol plus Meta-data like shape and equilibrium |
| CTopology1d | Helper class for construction |
| CTrueCurvatureKappaP | True \( \mathcal{K}^\varphi_{\vec{\kappa}} \) |
| CTrueCurvatureKappaR | True \( \mathcal{K}^R_{\vec{\kappa}} \) |
| CTrueCurvatureKappaZ | True \( \mathcal{K}^Z_{\vec{\kappa}} \) |
| CTrueCurvatureNablaBP | True \( \mathcal{K}^{\varphi}_{\nabla B} \) |
| CTrueCurvatureNablaBR | True \( \mathcal{K}^{R}_{\nabla B} \) |
| CTrueCurvatureNablaBZ | True \( \mathcal{K}^{Z}_{\nabla B} \) |
| CTrueDivCurvatureKappa | True \( \vec{\nabla}\cdot \mathcal{K}_{\vec{\kappa}} \) |
| CTrueDivCurvatureNablaB | True \( \vec{\nabla}\cdot \mathcal{K}_{\nabla B} \) |
| CWallDirection | Determine if poloidal field points towards or away from the nearest wall |
| CWallFieldlineCoordinate | Normalized coordinate relative to wall along fieldline in phi or s coordinate |
| CWallFieldlineDistance | Distance to wall along fieldline in phi or s coordinate |
| CZCutter | \( f(R,Z)= \begin{cases} 0 \text{ if } Z < Z_X \\ 1 \text{ else } \end{cases} \) |