Cdg::geo::aCylindricalFunctor< Derived > | Represent functions written in cylindrical coordinates that are independent of the angle phi serving as both 2d and 3d functions |
►Cdg::geo::aCylindricalFunctor< BFieldP > | |
Cdg::geo::BFieldP | \( B^\varphi = R_0I/R^2\) |
►Cdg::geo::aCylindricalFunctor< BFieldR > | |
Cdg::geo::BFieldR | \( B^R = R_0\psi_Z /R\) |
►Cdg::geo::aCylindricalFunctor< BFieldT > | |
Cdg::geo::BFieldT | \( B^{\theta} = B^R\partial_R\theta + B^Z\partial_Z\theta\) |
►Cdg::geo::aCylindricalFunctor< BFieldZ > | |
Cdg::geo::BFieldZ | \( B^Z = -R_0\psi_R /R\) |
►Cdg::geo::aCylindricalFunctor< BHatP > | |
Cdg::geo::BHatP | \( \hat b^\varphi = B^\varphi/|B|\) |
►Cdg::geo::aCylindricalFunctor< BHatPR > | |
Cdg::geo::BHatPR | \( \partial_R \hat b^\varphi\) |
►Cdg::geo::aCylindricalFunctor< BHatPZ > | |
Cdg::geo::BHatPZ | \( \partial_Z \hat b^\varphi\) |
►Cdg::geo::aCylindricalFunctor< BHatR > | |
Cdg::geo::BHatR | \( b^R = B^R/|B|\) |
►Cdg::geo::aCylindricalFunctor< BHatRR > | |
Cdg::geo::BHatRR | \( \partial_R b^R\) |
►Cdg::geo::aCylindricalFunctor< BHatRZ > | |
Cdg::geo::BHatRZ | \( \partial_Z b^R\) |
►Cdg::geo::aCylindricalFunctor< BHatZ > | |
Cdg::geo::BHatZ | \( b^Z = B^Z/|B|\) |
►Cdg::geo::aCylindricalFunctor< BHatZR > | |
Cdg::geo::BHatZR | \( \partial_R b^Z\) |
►Cdg::geo::aCylindricalFunctor< BHatZZ > | |
Cdg::geo::BHatZZ | \( \partial_Z b^Z\) |
►Cdg::geo::aCylindricalFunctor< Bmodule > | |
Cdg::geo::Bmodule | \( |B| = R_0\sqrt{I^2+(\nabla\psi)^2}/R \) |
►Cdg::geo::aCylindricalFunctor< BR > | |
Cdg::geo::BR | \( \frac{\partial |B| }{ \partial R} \) |
►Cdg::geo::aCylindricalFunctor< BZ > | |
Cdg::geo::BZ | \( \frac{\partial |B| }{ \partial Z} \) |
►Cdg::geo::aCylindricalFunctor< Constant > | |
Cdg::geo::Constant | \( f(x,y) = c\) |
►Cdg::geo::aCylindricalFunctor< CurvatureKappaR > | |
Cdg::geo::CurvatureKappaR | Approximate \( \mathcal{K}^{R}_{\vec{\kappa}}=0 \) |
►Cdg::geo::aCylindricalFunctor< CurvatureKappaZ > | |
Cdg::geo::CurvatureKappaZ | Approximate \( \mathcal{K}^{Z}_{\vec{\kappa}} \) |
►Cdg::geo::aCylindricalFunctor< CurvatureNablaBR > | |
Cdg::geo::CurvatureNablaBR | Approximate \( \mathcal{K}^{R}_{\nabla B} \) |
►Cdg::geo::aCylindricalFunctor< CurvatureNablaBZ > | |
Cdg::geo::CurvatureNablaBZ | Approximate \( \mathcal{K}^{Z}_{\nabla B} \) |
►Cdg::geo::aCylindricalFunctor< Divb > | |
Cdg::geo::Divb | \( \nabla \cdot \vec b \) |
►Cdg::geo::aCylindricalFunctor< DivCurvatureKappa > | |
Cdg::geo::DivCurvatureKappa | Approximate \( \vec{\nabla}\cdot \mathcal{K}_{\vec{\kappa}} \) |
►Cdg::geo::aCylindricalFunctor< DivCurvatureNablaB > | |
Cdg::geo::DivCurvatureNablaB | Approximate \( \vec{\nabla}\cdot \mathcal{K}_{\nabla B} \) |
►Cdg::geo::aCylindricalFunctor< DivLiseikinX > | |
Cdg::geo::DivLiseikinX | The x-component of the divergence of the Liseikin monitor metric |
►Cdg::geo::aCylindricalFunctor< DivLiseikinY > | |
Cdg::geo::DivLiseikinY | The y-component of the divergence of the Liseikin monitor metric |
►Cdg::geo::aCylindricalFunctor< DivVVP > | |
Cdg::geo::DivVVP | \( \nabla\cdot\left( \frac{ \hat b }{\hat b^\varphi}\right)\) |
►Cdg::geo::aCylindricalFunctor< GradLnB > | |
Cdg::geo::GradLnB | \( \nabla_\parallel \ln{(B)} \) |
►Cdg::geo::aCylindricalFunctor< Hoo > | |
Cdg::geo::Hoo | Inertia factor \( \mathcal I_0 = B^2/(R_0^2|\nabla\psi_p|^2)\) |
►Cdg::geo::aCylindricalFunctor< InvB > | |
Cdg::geo::InvB | \( |B|^{-1} = R/R_0\sqrt{I^2+(\nabla\psi)^2} \) |
►Cdg::geo::aCylindricalFunctor< Ipol > | |
Cdg::geo::guenter::Ipol | |
Cdg::geo::solovev::Ipol | |
Cdg::geo::taylor::Ipol | |
►Cdg::geo::aCylindricalFunctor< IpolR > | |
Cdg::geo::guenter::IpolR | |
Cdg::geo::solovev::IpolR | |
Cdg::geo::taylor::IpolR | |
►Cdg::geo::aCylindricalFunctor< IpolZ > | |
Cdg::geo::guenter::IpolZ | |
Cdg::geo::solovev::IpolZ | |
Cdg::geo::taylor::IpolZ | |
►Cdg::geo::aCylindricalFunctor< LaplacePsip > | |
Cdg::geo::LaplacePsip | \( \Delta\psi_p = \psi_R/R + \psi_{RR}+\psi_{ZZ} \) |
►Cdg::geo::aCylindricalFunctor< Liseikin_XX > | |
Cdg::geo::Liseikin_XX | The xx-component of the Liseikin monitor metric |
►Cdg::geo::aCylindricalFunctor< Liseikin_XY > | |
Cdg::geo::Liseikin_XY | The xy-component of the Liseikin monitor metric |
►Cdg::geo::aCylindricalFunctor< Liseikin_YY > | |
Cdg::geo::Liseikin_YY | The yy-component of the Liseikin monitor metric |
►Cdg::geo::aCylindricalFunctor< LnB > | |
Cdg::geo::LnB | \( \ln{|B|} \) |
►Cdg::geo::aCylindricalFunctor< NablaPsiInv > | |
Cdg::geo::NablaPsiInv | A weight function for the Hector algorithm |
►Cdg::geo::aCylindricalFunctor< NablaPsiInvX > | |
Cdg::geo::NablaPsiInvX | Derivative of the weight function |
►Cdg::geo::aCylindricalFunctor< NablaPsiInvY > | |
Cdg::geo::NablaPsiInvY | Derivative of the weight function |
►Cdg::geo::aCylindricalFunctor< Periodify > | |
Cdg::geo::Periodify | This function uses the dg::Grid2d::shift member to extend another function beyond the grid boundaries |
►Cdg::geo::aCylindricalFunctor< Psip > | |
Cdg::geo::circular::Psip | |
Cdg::geo::guenter::Psip | |
Cdg::geo::mod::Psip | \( \psi_{mod} := \begin{cases} H(\psi_p(R,Z))\text{ for } P(R,Z) \\ \psi_p(R,Z) \text { else } \end{cases} \) |
Cdg::geo::polynomial::Psip | \( \psi_p(R,Z) = R_0P_{\psi}\Bigg\{ \sum_i \sum_j c_{i*N+j} \bar R^i \bar Z^j \Bigg\} \) |
Cdg::geo::solovev::Psip | |
Cdg::geo::taylor::Psip | |
►Cdg::geo::aCylindricalFunctor< PsipR > | |
Cdg::geo::circular::PsipR | |
Cdg::geo::guenter::PsipR | |
Cdg::geo::mod::PsipR | |
Cdg::geo::polynomial::PsipR | |
Cdg::geo::solovev::PsipR | |
Cdg::geo::taylor::PsipR | |
►Cdg::geo::aCylindricalFunctor< PsipRR > | |
Cdg::geo::guenter::PsipRR | |
Cdg::geo::mod::PsipRR | |
Cdg::geo::polynomial::PsipRR | |
Cdg::geo::solovev::PsipRR | |
Cdg::geo::taylor::PsipRR | |
►Cdg::geo::aCylindricalFunctor< PsipRZ > | |
Cdg::geo::guenter::PsipRZ | |
Cdg::geo::mod::PsipRZ | |
Cdg::geo::polynomial::PsipRZ | |
Cdg::geo::solovev::PsipRZ | |
Cdg::geo::taylor::PsipRZ | |
►Cdg::geo::aCylindricalFunctor< PsipZ > | |
Cdg::geo::circular::PsipZ | |
Cdg::geo::guenter::PsipZ | |
Cdg::geo::mod::PsipZ | |
Cdg::geo::polynomial::PsipZ | |
Cdg::geo::solovev::PsipZ | |
Cdg::geo::taylor::PsipZ | |
►Cdg::geo::aCylindricalFunctor< PsipZZ > | |
Cdg::geo::guenter::PsipZZ | |
Cdg::geo::mod::PsipZZ | |
Cdg::geo::polynomial::PsipZZ | |
Cdg::geo::solovev::PsipZZ | |
Cdg::geo::taylor::PsipZZ | |
►Cdg::geo::aCylindricalFunctor< RhoP > | |
Cdg::geo::RhoP | |
►Cdg::geo::aCylindricalFunctor< ScalarProduct > | |
Cdg::geo::ScalarProduct | Return scalar product of two vector fields \( v_0w_0 + v_1w_1 + v_2w_2\) |
►Cdg::geo::aCylindricalFunctor< SetCompose > | |
Cdg::geo::mod::SetCompose | \( f( f_1(R,Z) , f_2(R,Z)) \) |
►Cdg::geo::aCylindricalFunctor< SetIntersection > | |
Cdg::geo::mod::SetIntersection | \( f_1 f_2 \equiv f_1 \cap f_2\) |
►Cdg::geo::aCylindricalFunctor< SetNot > | |
Cdg::geo::mod::SetNot | \( 1-f \equiv \bar f\) |
►Cdg::geo::aCylindricalFunctor< SetUnion > | |
Cdg::geo::mod::SetUnion | \( f_1 + f_2 - f_1 f_2 \equiv f_1 \cup f_2\) |
►Cdg::geo::aCylindricalFunctor< SquareNorm > | |
Cdg::geo::SquareNorm | Return norm of scalar product of two vector fields \( \sqrt{v_0w_0 + v_1w_1 + v_2w_2}\) |
►Cdg::geo::aCylindricalFunctor< TrueCurvatureKappaP > | |
Cdg::geo::TrueCurvatureKappaP | True \( \mathcal{K}^\varphi_{\vec{\kappa}} \) |
►Cdg::geo::aCylindricalFunctor< TrueCurvatureKappaR > | |
Cdg::geo::TrueCurvatureKappaR | True \( \mathcal{K}^R_{\vec{\kappa}} \) |
►Cdg::geo::aCylindricalFunctor< TrueCurvatureKappaZ > | |
Cdg::geo::TrueCurvatureKappaZ | True \( \mathcal{K}^Z_{\vec{\kappa}} \) |
►Cdg::geo::aCylindricalFunctor< TrueCurvatureNablaBP > | |
Cdg::geo::TrueCurvatureNablaBP | True \( \mathcal{K}^{\varphi}_{\nabla B} \) |
►Cdg::geo::aCylindricalFunctor< TrueCurvatureNablaBR > | |
Cdg::geo::TrueCurvatureNablaBR | True \( \mathcal{K}^{R}_{\nabla B} \) |
►Cdg::geo::aCylindricalFunctor< TrueCurvatureNablaBZ > | |
Cdg::geo::TrueCurvatureNablaBZ | True \( \mathcal{K}^{Z}_{\nabla B} \) |
►Cdg::geo::aCylindricalFunctor< TrueDivCurvatureKappa > | |
Cdg::geo::TrueDivCurvatureKappa | True \( \vec{\nabla}\cdot \mathcal{K}_{\vec{\kappa}} \) |
►Cdg::geo::aCylindricalFunctor< TrueDivCurvatureNablaB > | |
Cdg::geo::TrueDivCurvatureNablaB | True \( \vec{\nabla}\cdot \mathcal{K}_{\nabla B} \) |
►Cdg::geo::aCylindricalFunctor< WallDirection > | |
Cdg::geo::WallDirection | Determine if poloidal field points towards or away from the nearest wall |
►Cdg::geo::aCylindricalFunctor< WallFieldlineCoordinate > | |
Cdg::geo::WallFieldlineCoordinate | Normalized coordinate relative to wall along fieldline in phi or s coordinate |
Cdg::geo::WallFieldlineCoordinate | Normalized coordinate relative to wall along fieldline in phi or s coordinate |
Cdg::geo::WallFieldlineCoordinate | Normalized coordinate relative to wall along fieldline in phi or s coordinate |
►Cdg::geo::aCylindricalFunctor< WallFieldlineDistance > | |
Cdg::geo::WallFieldlineDistance | Distance to wall along fieldline in phi or s coordinate |
Cdg::geo::WallFieldlineDistance | Distance to wall along fieldline in phi or s coordinate |
Cdg::geo::WallFieldlineDistance | Distance to wall along fieldline in phi or s coordinate |
►Cdg::geo::aCylindricalFunctor< ZCutter > | |
Cdg::geo::ZCutter | \( f(R,Z)= \begin{cases} 0 \text{ if } Z < Z_X \\ 1 \text{ else } \end{cases} \) |
►Cdg::geo::aRealGenerator2d< real_type > | The abstract generator base class |
Cdg::geo::DSPGenerator | A transformed field grid generator |
Cdg::geo::FluxGenerator | A symmetry flux generator |
Cdg::geo::Hector< IMatrix, Matrix, container > | The High PrEcision Conformal grid generaTOR |
Cdg::geo::LogPolarGenerator | Log Polar coordinates (conformal) |
Cdg::geo::PolarGenerator | Polar coordinates |
Cdg::geo::Ribeiro | A two-dimensional grid based on "almost-conformal" coordinates by Ribeiro and Scott 2010 |
Cdg::geo::RibeiroFluxGenerator | Same as the Ribeiro class just but uses psi as a flux label directly |
Cdg::geo::SeparatrixOrthogonalAdaptor | An Adaptor to use SeparatrixOrthogonal as aGenerator2d instead of aGeneratorX2d |
Cdg::geo::SimpleOrthogonal | Generate a simple orthogonal grid |
►Cdg::geo::aRealGeneratorX2d< real_type > | The abstract generator base class |
Cdg::geo::RibeiroX | A two-dimensional grid based on "almost-conformal" coordinates by Ribeiro and Scott 2010 |
Cdg::geo::SeparatrixOrthogonal | Choose points on separatrix and construct grid from there |
►Cdg::aRealMPITopology2d< class real_type > [external] | |
►Cdg::aRealMPIGeometry2d< real_type > [external] | |
Cdg::geo::RealCurvilinearMPIGrid2d< real_type > | A two-dimensional MPI grid based on curvilinear coordinates |
►Cdg::aRealMPITopology3d< class real_type > [external] | |
►Cdg::aRealMPIGeometry3d< class real_type > [external] | |
►Cdg::aRealProductMPIGeometry3d< real_type > [external] | |
Cdg::geo::RealCurvilinearProductMPIGrid3d< real_type > | A 2x1 curvilinear product space MPI grid |
►Cdg::aRealTopology2d< class real_type > [external] | |
►Cdg::aRealGeometry2d< real_type > [external] | |
Cdg::geo::RealCurvilinearGrid2d< real_type > | A two-dimensional grid based on curvilinear coordinates |
►Cdg::aRealGeometry2d< double > [external] | |
Cdg::geo::RealCurvilinearGrid2d< double > | |
►Cdg::aRealTopology3d< class real_type > [external] | |
►Cdg::aRealGeometry3d< class real_type > [external] | |
►Cdg::aRealProductGeometry3d< real_type > [external] | |
Cdg::geo::RealCurvilinearProductGrid3d< real_type > | A 2x1 curvilinear product space grid |
►Cdg::aRealTopologyX2d< class real_type > [external] | |
►Cdg::aRealGeometryX2d< real_type > [external] | |
Cdg::geo::RealCurvilinearGridX2d< real_type > | A two-dimensional grid based on curvilinear coordinates |
Cdg::geo::RealCurvilinearRefinedGridX2d< real_type > | A two-dimensional grid based on curvilinear coordinates |
►Cdg::aRealTopologyX3d< class real_type > [external] | |
►Cdg::aRealGeometryX3d< real_type > [external] | |
Cdg::geo::RealCurvilinearProductGridX3d< real_type > | A three-dimensional grid based on curvilinear coordinates |
Cdg::geo::RealCurvilinearRefinedProductGridX3d< real_type > | A three-dimensional grid based on curvilinear coordinates |
Cdg::geo::CylindricalFunctorsLvl1 | This struct bundles a function and its first derivatives |
Cdg::geo::CylindricalFunctorsLvl2 | This struct bundles a function and its first and second derivatives |
Cdg::geo::CylindricalSymmTensorLvl1 | |
Cdg::geo::CylindricalVectorLvl0 | |
Cdg::geo::CylindricalVectorLvl1 | This struct bundles a vector field and its divergence |
Cdg::geo::DS< ProductGeometry, IMatrix, Matrix, container > | Class for the evaluation of parallel derivatives |
Cdg::geo::Fieldaligned< ProductGeometry, IMatrix, container > | Create and manage interpolation matrices from fieldline integration |
Cdg::geo::FluxSurfaceAverage< container > | Flux surface average (differential volume average) over quantity \( \langle f\rangle(\psi_0) = \frac{1}{A} \int dR dZ \delta(\psi_p(R,Z)-\psi_0) f(R,Z)H(R,Z) \) |
Cdg::geo::FluxSurfaceIntegral< container > | Flux surface integral of the form \( \int dR dZ f(R,Z) \delta(\psi_p(R,Z)-\psi_0) g(R,Z) \) |
Cdg::geo::FluxSurfaceIntegral< thrust::host_vector< double > > | |
Cdg::geo::FluxVolumeIntegral< container > | Flux volume integral of the form \( \int dR dZ f(R,Z) \Theta(\psi_p(R,Z)-\psi_0) g(R,Z) \) |
Cdg::geo::MagneticFieldParameters | Meta-data about the magnetic field in particular the flux function |
Cdg::geo::polynomial::Parameters | Constructs and display geometric parameters for the polynomial fields |
Cdg::geo::solovev::Parameters | Constructs and display geometric parameters for the solovev and taylor fields |
Cdg::geo::RealCylindricalFunctor< real_type > | Inject both 2d and 3d operator() to a 2d functor |
Cdg::geo::RealCylindricalFunctor< double > | |
Cdg::geo::SafetyFactor | Evaluation of the safety factor q based on direct integration of \( q(\psi_0) = \frac{1}{2\pi} \int d\Theta \frac{B^\varphi}{B^\Theta} \) |
Cdg::geo::SafetyFactorAverage | Class for the evaluation of the safety factor q based on a flux-surface integral \( q(\psi_0) = \frac{1}{2\pi} \int dRdZ \frac{I(\psi_p)}{R} \delta(\psi_p - \psi_0)H(R,Z) \) |
Cdg::geo::TokamakMagneticField | A tokamak field as given by R0, Psi and Ipol plus Meta-data like shape and equilibrium |
Cdg::geo::Topology1d | Helper class for construction |