Discontinuous Galerkin Library
#include "dg/algorithm.h"
|
Cdg::ABS< T > | \( f(x) = |x|\) |
Cdg::AbsMax< T > | \( f(x,y) = \max(|x|,|y|)\) |
Cdg::AbsMin< T > | \( f(x,y) = \min(|x|,|y|)\) |
Cdg::aCommunicator< LocalContainer > | Struct that performs collective scatter and gather operations across processes on distributed vectors using MPI |
►Cdg::aCommunicator< Vector > | |
Cdg::Adaptive< Stepper > | Driver class for adaptive timestep ODE integration |
Cdg::Advection< Geometry, Matrix, Container > | Upwind discretization of advection operator \( \vec v\cdot\nabla f\) |
Cdg::AndersonAcceleration< ContainerType > | Anderson Acceleration of Fixed Point/Richardson Iteration for the nonlinear equation \( f(x) = b\) |
►Cdg::AnyMatrixTag | Tensor_category base class |
►Cdg::AnyPolicyTag | Execution Policy base class |
Cdg::ArakawaX< Geometry, Matrix, Container > | Arakawa's scheme for Poisson bracket \( \{ f,g\} \) |
►Cdg::aRealMPITopology2d< real_type > | 2D MPI abstract grid class |
►Cdg::aRealMPITopology3d< real_type > | 3D MPI Grid class |
►Cdg::aRealRefinement1d< real_type > | Abstract base class for 1d grid refinement that increases the number of grid cells of a fixed basis grid |
►Cdg::aRealRefinementX2d< real_type > | Abstract base class for 2d grid refinement that increases the number of grid cells of a fixed basis grid |
►Cdg::aRealTopology2d< real_type > | An abstract base class for two-dimensional grids |
►Cdg::aRealTopology2d< double > | |
►Cdg::aRealTopology3d< real_type > | An abstract base class for three-dimensional grids |
►Cdg::aRealTopologyX2d< real_type > | A 2D grid class with X-point topology |
►Cdg::aRealTopologyX3d< real_type > | A 3D grid class with X-point topology |
Cdg::ARKStep< ContainerType > | Additive Runge Kutta (semi-implicit) time-step with error estimate following The ARKode library |
►Cdg::aTimeloop< ContainerType > | Abstract timeloop independent of stepper and ODE |
Cdg::Average< ContainerType > | Topological average computations in a Cartesian topology |
Cdg::Average< MPI_Vector< container > > | MPI specialized class for average computations |
Cdg::Axpby< T > | \( y\leftarrow ax+by \) |
Cdg::Axpbypgz< T > | \( z\leftarrow ax+by+gz \) |
Cdg::AxyPby< T > | \( y\leftarrow axy+by \) |
Cdg::BathRZ | \(f(R,Z) = A B \sum_\vec{k} \sqrt{E_k} \alpha_k \cos{\left(k \kappa_k + \theta_k \right)} \) |
Cdg::BICGSTABl< ContainerType > | Preconditioned BICGSTAB(l) method to solve \( Ax=b\) |
Cdg::Buffer< T > | Manager class that invokes the copy constructor on the managed ptr when copied (deep copy) |
Cdg::Buffer< Index > | |
Cdg::Buffer< thrust::host_vector< get_value_type< Vector > > > | |
Cdg::Buffer< typename Collective::buffer_type > | |
Cdg::Buffer< typename Collective::container_type > | |
Cdg::Buffer< value_type > | |
Cdg::Buffer< Vector > | |
Cdg::ButcherTableau< real_type > | Manage coefficients of a (extended) Butcher tableau |
Cdg::ButcherTableau< value_type > | |
Cdg::Cauchy | \( f(x,y) = \begin{cases} Ae^{1 + \left(\frac{(x-x_0)^2}{\sigma_x^2} + \frac{(y-y_0)^2}{\sigma_y^2} - 1\right)^{-1}} \text{ if } \frac{(x-x_0)^2}{\sigma_x^2} + \frac{(y-y_0)^2}{\sigma_y^2} < 1\\ 0 \text{ else} \end{cases} \) |
Cdg::CauchyX | \( f(x,y) = \begin{cases} Ae^{1 + \left(\frac{(x-x_0)^2}{\sigma_x^2} - 1\right)^{-1}} \text{ if } \frac{(x-x_0)^2}{\sigma_x^2} < 1\\ 0 \text{ else} \end{cases} \) |
Cdg::ChebyshevIteration< ContainerType > | Preconditioned Chebyshev iteration for solving \( PAx=Pb\) |
Cdg::ChebyshevPreconditioner< Matrix, ContainerType > | Chebyshev Polynomial Preconditioner \( C( A)\) |
Cdg::ClonePtr< Cloneable > | Manager class that invokes the clone() method on the managed ptr when copied |
Cdg::ClonePtr< Collective > | |
Cdg::ClonePtr< dg::aRealRefinement1d< real_type > > | |
Cdg::Composite< Matrix > | |
Cdg::CONSTANT | \( f(x) = f(x,y) = f(x,y,z) = c\) |
Cdg::ConvertsToButcherTableau< real_type > | Convert identifiers to their corresponding dg::ButcherTableau |
Cdg::ConvertsToMultistepTableau< real_type > | Convert identifiers to their corresponding dg::MultistepTableau |
Cdg::ConvertsToShuOsherTableau< real_type > | Convert identifiers to their corresponding dg::ShuOsherTableau |
Cdg::CooSparseBlockMat< value_type > | Coo Sparse Block Matrix format |
Cdg::CosXCosY | \( f(x,y) =B+ A \cos(k_x x) \cos(k_y y) \) |
Cdg::CosY | \( f(x,y) =B+ A \cos(k_y y) \) |
Cdg::CSRAverageFilter | Average filter that computes the average of all points in the stencil |
Cdg::CSRMedianFilter | Compute (lower) Median of input numbers |
Cdg::CSRSlopeLimiter< real_type > | Generalized slope limiter for dG methods |
Cdg::CSRSWMFilter< real_type > | Switching median filter |
Cdg::CSRSymvFilter | Test filter that computes the symv csr matrix-vector product if used |
Cdg::DefaultSolver< ContainerType > | PCG Solver class for solving \( (y-\alpha\hat I(t,y)) = \rho\) |
Cdg::DIRKStep< ContainerType > | Embedded diagonally implicit Runge Kutta time-step with error estimate \( \begin{align} k_i = f\left( t^n + c_i \Delta t, u^n + \Delta t \sum_{j=1}^{i} a_{ij} k_j\right) \\ u^{n+1} = u^{n} + \Delta t\sum_{j=1}^s b_j k_j \\ \tilde u^{n+1} = u^{n} + \Delta t\sum_{j=1}^s \tilde b_j k_j \\ \delta^{n+1} = u^{n+1} - \tilde u^{n+1} = \Delta t\sum_{j=1}^s (b_j-\tilde b_j) k_j \end{align} \) |
Cdg::Distance | \( f(x,y) = \sqrt{ (x-x_0)^2 + (y-y_0)^2} \) |
Cdg::divides | \( y = x_1/x_2 \) |
Cdg::divides_equals | \( y = y/x\) |
Cdg::DLT< real_type > | Struct holding coefficients for Discrete Legendre Transformation (DLT) related operations |
Cdg::DLT< double > | |
Cdg::DPolynomialHeaviside | \( f(x) = \begin{cases} 0 \text{ if } x < x_b-a || x > x_b+a \\ (35 (a + x - x_b)^3 (a - x + x_b)^3)/(32 a^7) \text{ if } |x-x_b| < a \end{cases}\) The derivative of PolynomialHeaviside approximates delta(x) |
Cdg::Elliptic1d< Geometry, Matrix, Container > | A 1d negative elliptic differential operator \( -\partial_x ( \chi \partial_x ) \) |
Cdg::Elliptic2d< Geometry, Matrix, Container > | A 2d negative elliptic differential operator \( -\nabla \cdot ( \mathbf{\chi}\cdot \nabla ) \) |
Cdg::Elliptic3d< Geometry, Matrix, Container > | A 3d negative elliptic differential operator \( -\nabla \cdot ( \mathbf{\chi}\cdot \nabla ) \) |
Cdg::EllSparseBlockMat< value_type > | Ell Sparse Block Matrix format |
Cdg::EmbeddedPairSum | \( y = \sum_i a_i x_i + b y,\quad \tilde y = \sum_i \tilde a_i x_i + \tilde b y \) |
Cdg::EntireDomain | The domain that contains all points |
Cdg::equals | \( y=x\) |
Cdg::ERKStep< ContainerType > | Embedded Runge Kutta explicit time-step with error estimate \( \begin{align} k_i = f\left( t^n + c_i \Delta t, u^n + \Delta t \sum_{j=1}^{i-1} a_{ij} k_j\right) \\ u^{n+1} = u^{n} + \Delta t\sum_{j=1}^s b_j k_j \\ \tilde u^{n+1} = u^{n} + \Delta t\sum_{j=1}^s \tilde b_j k_j \\ \delta^{n+1} = u^{n+1} - \tilde u^{n+1} = \Delta t\sum_{j=1}^s (b_j - \tilde b_j) k_j \end{align} \) |
Cdg::Evaluate< BinarySub, Functor > | \( f( y, g(x_0, ..., x_s)) \) |
Cdg::EVE< ContainerType > | The Eigen-Value-Estimator (EVE) finds largest Eigenvalue of \( M^{-1}Ax = \lambda_\max x\) |
►Cstd::exception | |
Cdg::EXP< T > | \( f(x) = \exp( x)\) |
Cdg::ExplicitMultistep< ContainerType > | General explicit linear multistep ODE integrator \( \begin{align} v^{n+1} = \sum_{j=0}^{s-1} a_j v^{n-j} + \Delta t\left(\sum_{j=0}^{s-1}b_j \hat f\left(t^{n}-j\Delta t, v^{n-j}\right)\right) \end{align} \) |
Cdg::ExponentialFilter | \( f(i) = \begin{cases} 1 \text{ if } \eta < \eta_c \\ \exp\left( -\alpha \left(\frac{\eta-\eta_c}{1-\eta_c} \right)^{2s}\right) \text { if } \eta \geq \eta_c \\ 0 \text{ else} \\ \eta=\frac{i}{1-n} \end{cases}\) |
Cdg::ExpProfX | \( f(x) = f(x,y) = f(x,y,z) = A\exp(-x/L_n) + B \) |
Cdg::Extrapolation< ContainerType > | Extrapolate a polynomial passing through up to three points |
Cdg::FilteredERKStep< ContainerType > | EXPERIMENTAL: Filtered Embedded Runge Kutta explicit time-step with error estimate \( \begin{align} k_i = f\left( t^n + c_i \Delta t, \Lambda\Pi \left[u^n + \Delta t \sum_{j=1}^{i-1} a_{ij} k_j\right]\right) \\ u^{n+1} = \Lambda\Pi\left[u^{n} + \Delta t\sum_{j=1}^s b_j k_j\right] \\ \delta^{n+1} = \Delta t\sum_{j=1}^s (\tilde b_j - b_j) k_j \end{align} \) |
Cdg::FilteredExplicitMultistep< ContainerType > | EXPERIMENTAL: General explicit linear multistep ODE integrator with Limiter / Filter \( \begin{align} \tilde v &= \sum_{j=0}^{s-1} a_j v^{n-j} + \Delta t\left(\sum_{j=0}^{s-1}b_j \hat f\left(t^{n}-j\Delta t, v^{n-j}\right)\right) \\ v^{n+1} &= \Lambda\Pi \left( \tilde v\right) \end{align} \) |
Cdg::Gaussian | \( f(x,y) = Ae^{-\left(\frac{(x-x_0)^2}{2\sigma_x^2} + \frac{(y-y_0)^2}{2\sigma_y^2}\right)} \) |
Cdg::Gaussian3d | \( f(x,y,z) = Ae^{-\left(\frac{(x-x_0)^2}{2\sigma_x^2} + \frac{(y-y_0)^2}{2\sigma_y^2} + \frac{(z-z_0)^2}{2\sigma_z^2}\right)} \) |
Cdg::GaussianDamping | \( f(\psi) = \begin{cases} 1 \text{ if } \psi < \psi_{\max}\\ 0 \text{ if } \psi > (\psi_{\max} + 4\alpha) \\ \exp\left( - \frac{(\psi - \psi_{\max})^2}{2\alpha^2}\right), \text{ else} \end{cases} \) |
Cdg::GaussianX | \( f(x,y) = Ae^{-\frac{(x-x_0)^2}{2\sigma_x^2} } \) |
Cdg::GaussianY | \( f(x,y) = Ae^{-\frac{(y-y_0)^2}{2\sigma_y^2}} \) |
Cdg::GaussianZ | \( f(x,y,z) = Ae^{-\frac{(z-z_0)^2}{2\sigma_z^2}} \) |
Cdg::GeneralHelmholtz< Matrix, Container > | A general Helmholtz-type operator \( (\chi-\alpha F) \) |
Cdg::Heaviside | \( f(x) = \begin{cases} 0 \text{ if } x < x_b \\ 1 \text{ else} \end{cases}\) |
Cdg::Helmholtz2< Geometry, Matrix, Container > | DEPRECATED, Matrix class that represents a more general Helmholtz-type operator |
Cdg::Histogram< container > | Compute a histogram on a 1D grid |
Cdg::Histogram2D< container > | Compute a histogram on a 2D grid |
Cdg::Horner2d | \( f(x,y) = \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} c_{iN+j} x^i y^j \) |
Cdg::IDENTITY | \( f(x) = x\) |
Cdg::IdentityFilter | A filter that does nothing |
Cdg::ImExMultistep< ContainerType > | Semi-implicit multistep ODE integrator \( \begin{align} v^{n+1} = \sum_{q=0}^{s-1} a_q v^{n-q} + \Delta t\left[\left(\sum_{q=0}^{s-1}b_q \hat E(t^{n}-q\Delta t, v^{n-q}) + \sum_{q=1}^{s} c_q \hat I( t^n - q\Delta t, v^{n-q})\right) + c_0\hat I(t^{n}+\Delta t, v^{n+1})\right] \end{align} \) |
Cdg::ImplicitMultistep< ContainerType > | Implicit multistep ODE integrator \( \begin{align} v^{n+1} &= \sum_{i=0}^{s-1} a_i v^{n-i} + \Delta t \sum_{i=1}^{s} c_i\hat I(t^{n+1-i}, v^{n+1-i}) + \Delta t c_{0} \hat I (t + \Delta t, v^{n+1}) \\ \end{align} \) |
Cdg::InvCoshXsq | \( f(x,y) =A/\cosh^2(k_x x) \) |
Cdg::InverseKroneckerTriDiagonal2d< Container > | Fast inverse tridiagonal sparse matrix in 2d \( T_y^{-1}\otimes T_x^{-1}\) |
Cdg::InverseTensorMultiply2d< value_type > | \( y_i \leftarrow \lambda T^{-1}_{ij} x_i + \mu y_i\) |
Cdg::InverseTensorMultiply3d< value_type > | \( y_i \leftarrow \lambda T^{-1}_{ij} x_i + \mu y_i\) |
Cdg::InverseTriDiagonal< value_type > | Fast inverse tridiagonal sparse matrix |
Cdg::INVERT< T > | \( f(x) = 1/x \) |
Cdg::InvSqrt< T > | \( f(x) = \frac{1}{\sqrt{x}}\) |
Cdg::IPolynomialHeaviside | \( f(x) = \begin{cases} x_b \text{ if } x < x_b-a \\ x_b + ((35 a^3 - 47 a^2 (x - x_b) + 25 a (x - x_b)^2 - 5 (x - x_b)^3) (a + x - x_b)^5)/(256 a^7) \text{ if } |x-x_b| < a \\ x \text{ if } x > x_b + a \end{cases}\) The integral of PolynomialHeaviside approximates xH(x) |
Cdg::Iris | \( f(\psi) = \begin{cases} 1 \text{ if } \psi_{\min} < \psi < \psi_{\max}\\ 0 \text{ else} \end{cases}\) |
Cdg::IslandXY | \( f(x,y) = \lambda \ln{(\cosh{(x/\lambda) } +\epsilon \cos(y/\lambda)) } \) |
Cdg::ISNFINITE< T > | \( f(x) = \mathrm{!std::isfinite(x)}\) |
Cdg::ISNSANE< T > | \( f(x) =\begin{cases} \mathrm{true\ if}\ |x| > 10^{100}\\ \mathrm{false\ else} \end{cases}\) |
Cdg::KroneckerTriDiagonal2d< Container > | Fast tridiagonal sparse matrix in 2d \( T_y\otimes T_x\) |
Cdg::Lamb | \( f(x,y) = \begin{cases} 2\lambda U J_1(\lambda r) / J_0(\gamma)\cos(\theta) \text{ for } r<R \\ 0 \text{ else} \end{cases} \) |
Cdg::LeastSquaresExtrapolation< ContainerType0, ContainerType1 > | Evaluate a least squares fit |
Cdg::LeastSquaresPreconditioner< Matrix, InnerPreconditioner, ContainerType > | Least Squares Polynomial Preconditioner \( M^{-1} s( AM^{-1})\) |
Cdg::LGMRES< ContainerType > | Functor class for the right preconditioned LGMRES method to solve \( Ax=b\) |
Cdg::Line | \( f(x) = y_1\frac{x-x_0}{x_1-x_0} + y_0\frac{x-x_1}{x_0-x_1}\) |
Cdg::LinearX | \( f(x) = f(x,y) = f(x,y,z) = ax+b \) |
Cdg::LinearY | \( f(x,y) = f(x,y,z) = ay+b \) |
Cdg::LinearZ | \( f(x,y,z) = az+b \) |
Cdg::LN< T > | \( f(x) = \ln(x)\) |
Cdg::Message | Small class holding a stringstream |
Cdg::MinMod | \( f(x_1, x_2, ...) = \begin{cases} \min(x_1, x_2, ...) &\text{ for } x_1, x_2, ... >0 \\ \max(x_1, x_2, ...) &\text{ for } x_1, x_2, ... <0 \\ 0 &\text{ else} \end{cases} \) |
Cdg::minus_equals | \( y=y-x\) |
Cdg::MOD< T > | \( f(x) = \) x mod m > 0 ? x mod m : x mod m + m |
Cdg::ModifiedChebyshevPreconditioner< Matrix, ContainerType > | Approximate inverse Chebyshev Polynomial Preconditioner \( A^{-1} = \frac{c_0}{2} I + \sum_{k=1}^{r}c_kT_k( Z)\) |
Cdg::MPI_Vector< container > | Mpi Vector class |
Cdg::MPIDistMat< LocalMatrix, Collective > | Distributed memory matrix class |
Cdg::MPITag | Distributed memory system |
Cdg::MultigridCG2d< Geometry, Matrix, Container > | Solve |
Cdg::MultiMatrix< MatrixType, ContainerType > | Struct that applies given matrices one after the other |
Cdg::MultistepTableau< real_type > | Manage coefficients of Multistep methods |
Cdg::MultistepTableau< value_type > | |
Cdg::NearestNeighborComm< Index, Buffer, Vector > | Communicator for asynchronous nearest neighbor communication |
Cdg::NestedGrids< Geometry, Matrix, Container > | Hold nested grids and provide dg fast interpolation and projection matrices |
Cdg::NoPolicyTag | Indicate that a type does not have an execution policy |
Cdg::NotATensorTag | Indicate that a type is not a tensor |
Cdg::ONE | \( f(x) = f(x,y) = f(x,y,z) = 1\) |
Cdg::OneDimensionalTag | 1d |
Cdg::Operator< T > | A square nxn matrix |
Cdg::Operator< double > | |
Cdg::Operator< int > | |
Cdg::Operator< real_type > | |
Cdg::Operator< value_type > | |
Cdg::PairSum | \( y = \sum_i a_i x_i \) |
Cdg::PCG< ContainerType > | Preconditioned conjugate gradient method to solve \( Ax=b\) |
Cdg::Plus< T > | \( y\leftarrow y+a \) |
Cdg::PLUS< T > | \( f(x) = x + c\) |
Cdg::plus_equals | \( y=y+x\) |
Cdg::PointwiseDivide< T > | \( z\leftarrow ax/y + bz \) |
Cdg::PointwiseDot< T > | \( z\leftarrow ax_1y_1+bx_2y_2+gz \) |
Cdg::Poisson< Geometry, Matrix, Container > | Direct discretization of Poisson bracket \( \{ f,g\} \) |
Cdg::PolynomialHeaviside | \( f(x) = \begin{cases} 0 \text{ if } x < x_b-a \\ ((16 a^3 - 29 a^2 (x - x_b) + 20 a (x - x_b)^2 - 5 (x - x_b)^3) (a + x - x_b)^4)/(32 a^7) \text{ if } |x-x_b| < a \\ 1 \text{ if } x > x_b + a \end{cases}\) |
Cdg::PolynomialRectangle | \( f(x) = \begin{cases} 0 \text{ if } x < x_l-a_l \\ ((16 a_l^3 - 29 a_l^2 (x - x_l) + 20 a_l (x - x_l)^2 - 5 (x - x_l)^3) (a_l + x - x_l)^4)/(32 a_l^7) \text{ if } |x-x_l| < a_l \\ 1 \text{ if } x_l + a_l < x < x_r-a_r \\ ((16 a_r^3 - 29 a_r^2 (x - x_r) + 20 a_r (x - x_r)^2 - 5 (x - x_r)^3) (a_r + x - x_l)^4)/(32 a_r^7) \text{ if } |x-x_r| < a_r \\ 0 \text{ if } x > x_r + a_r \end{cases}\) |
Cdg::POSVALUE< T > | \( f(x) = \begin{cases} x \text{ for } x>0 \\ 0 \text{ else} \end{cases} \) |
Cdg::PsiPupil | \( f(\psi) = \begin{cases} \psi_{\max} \text{ if } \psi > \psi_{\max} \\ \psi \text{ else} \end{cases}\) |
Cdg::Pupil | \( f(\psi) = \begin{cases} 0 \text{ if } \psi > \psi_{\max} \\ 1 \text{ else} \end{cases}\) |
Cdg::RealGrid1d< real_type > | 1D grid |
Cdg::RealGrid1d< double > | |
Cdg::RealGridX1d< real_type > | 1D grid for X-point topology |
Cdg::RefinedElliptic< Geometry, IMatrix, Matrix, Container > | The refined version of Elliptic |
Cdg::RowColDistMat< LocalMatrixInner, LocalMatrixOuter, Collective > | Distributed memory matrix class, asynchronous communication |
Cdg::Scal< T > | \( y\leftarrow ay \) |
Cdg::SharedTag | Shared memory system |
Cdg::ShuOsher< ContainerType > | Shu-Osher fixed-step explicit ODE integrator with Slope Limiter / Filter \( \begin{align} u_0 &= u_n \\ u_i &= \Lambda\Pi \left(\sum_{j=0}^{i-1}\left[ \alpha_{ij} u_j + \Delta t \beta_{ij} f( t_j, u_j)\right]\right)\\ u^{n+1} &= u_s \end{align} \) |
Cdg::ShuOsherTableau< real_type > | Manage coefficients in Shu-Osher form |
Cdg::ShuOsherTableau< value_type > | |
Cdg::Sign< T > | \( f(x) = \text{sgn}(x) = \begin{cases} -1 \text{ for } x < 0 \\ 0 \text{ for } x = 0 \\ +1 \text{ for } x > 0 \end{cases}\) |
Cdg::Simpsons< ContainerType > | Time integration based on Simpson's rule |
Cdg::SinProfX | \( f(x) = f(x,y) = f(x,y,z) = B + A(1 - \sin(k_xx )) \) |
Cdg::SinX | \( f(x) = f(x,y) = f(x,y,z) =B+ A \sin(k_x x) \) |
Cdg::SinXCosY | \( f(x,y) =B+ A \sin(k_x x) \cos(k_y y) \) |
Cdg::SinXSinY | \( f(x,y) =B+ A \sin(k_x x) \sin(k_y y) \) |
Cdg::SinY | \( f(x,y) =B+ A \sin(k_y y) \) |
Cdg::SlopeLimiter< Limiter > | \( \text{up}(v, g_m, g_0, g_p, h_m, h_p ) = \begin{cases} +h_m \Lambda( g_0, g_m) &\text{ if } v \geq 0 \\ -h_p \Lambda( g_p, g_0) &\text{ else} \end{cases} \) |
Cdg::SlopeLimiterProduct< Limiter > | \( \text{up}(v, g_m, g_0, g_p, h_m, h_p ) = v \begin{cases} +h_m \Lambda( g_0, g_m) &\text{ if } v \geq 0 \\ -h_p \Lambda( g_p, g_0) &\text{ else} \end{cases} \) |
Cdg::SparseTensor< container > | Class for 2x2 and 3x3 matrices sharing elements |
Cdg::SparseTensor< Container > | |
Cdg::SQRT< T > | \( f(x) = \sqrt{x}\) |
Cdg::Square | \( f(x) = x^2\) |
Cdg::Sum | \( y = \sum_i x_i \) |
Cdg::TanhProfX | \( f(x) = B + 0.5 A(1+ \text{sign} \tanh((x-x_b)/\alpha ) ) \) |
Cdg::TensorDeterminant2d< value_type > | \( y = t_{00} t_{11} - t_{10}t_{01} \) |
Cdg::TensorDeterminant3d< value_type > | \( y = t_{00} t_{11}t_{22} + t_{01}t_{12}t_{20} + t_{02}t_{10}t_{21} - t_{02}t_{11}t_{20} - t_{01}t_{10}t_{22} - t_{00}t_{12}t_{21} \) |
Cdg::TensorDot2d< value_type > | \( y = \lambda\mu v_i T_{ij} w_j \) |
Cdg::TensorDot3d< value_type > | \( y = \lambda \mu v_i T_{ij} w_j \) |
Cdg::TensorMultiply2d< value_type > | \( y_i \leftarrow \lambda T_{ij} x_i + \mu y_i\) |
Cdg::TensorMultiply3d< value_type > | \( y_i \leftarrow \lambda T_{ij} x_i + \mu y_i\) |
Cdg::TensorTraits< Vector, Enable > | The vector traits |
Cdg::TensorTraits< CooSparseBlockMat< T > > | |
Cdg::TensorTraits< cusp::coo_matrix< I, V, M > > | |
Cdg::TensorTraits< cusp::csr_matrix< I, V, M > > | |
Cdg::TensorTraits< cusp::dia_matrix< I, V, M > > | |
Cdg::TensorTraits< cusp::ell_matrix< I, V, M > > | |
Cdg::TensorTraits< cusp::hyb_matrix< I, V, M > > | |
Cdg::TensorTraits< EllSparseBlockMat< T > > | |
Cdg::TensorTraits< MPI_Vector< container > > | Prototypical MPI vector |
Cdg::TensorTraits< MPIDistMat< L, C > > | |
Cdg::TensorTraits< RowColDistMat< LI, LO, C > > | |
Cdg::TensorTraits< std::array< T, N >, std::enable_if_t< !std::is_arithmetic< T >::value > > | |
Cdg::TensorTraits< std::array< T, N >, std::enable_if_t< std::is_arithmetic< T >::value > > | |
Cdg::TensorTraits< std::map< Key, T > > | Behaves like a RecursiveVector |
Cdg::TensorTraits< std::vector< T >, std::enable_if_t< !std::is_arithmetic< T >::value > > | Prototypical Recursive Vector |
Cdg::TensorTraits< std::vector< T >, std::enable_if_t< std::is_arithmetic< T >::value > > | |
Cdg::TensorTraits< T, std::enable_if_t< std::is_arithmetic< T >::value > > | Recognize arithmetic types as scalars |
Cdg::TensorTraits< thrust::device_vector< T > > | Prototypical Shared Vector with Cuda or Omp Tag |
Cdg::TensorTraits< thrust::host_vector< T > > | Prototypical Shared Vector with Serial Tag |
Cdg::TensorTraits< View< ThrustVector > > | A View has identical value_type and execution_policy as the underlying container |
Cdg::ThreeDimensionalTag | 3d |
Cdg::Timer | Simple tool for performance measuring |
Cdg::times_equals | \( y=xy\) |
Cdg::TopologyTraits< Topology > | |
Cdg::TriDiagonal< Container > | Fast (shared memory) tridiagonal sparse matrix |
Cdg::TripletSum | \( y = \sum_i a_i x_i y_i \) |
Cdg::TwoDimensionalTag | 2d |
Cdg::Upwind | \( \text{up}(v, b, f ) = \begin{cases} b &\text{ if } v \geq 0 \\ f &\text{ else} \end{cases} \) |
Cdg::UpwindProduct | \( \text{up}(v, b, f ) = v \begin{cases} b &\text{ if } v \geq 0 \\ f &\text{ else} \end{cases} \) |
Cdg::VanLeer | \( f(x_1,x_2) = 2\begin{cases} \frac{x_1x_2}{x_1+x_2} &\text{ if } x_1x_2 > 0 \\ 0 & \text { else } \end{cases} \) |
Cdg::View< ThrustVector > | A vector view class, usable in dg functions |
Cdg::Vortex | \(f(x,y) =\begin{cases} \frac{u_d}{1.2965125} \left( r\left(1+\frac{\beta_i^2}{g_i^2}\right) - R \frac{\beta_i^2}{g_i^2} \frac{J_1(g_ir/R)}{J_1(g_i)}\right)\cos(\theta) \text{ if } r < R \\ \frac{u_d}{1.2965125} R \frac{K_1(\beta_i {r}/{R})}{K_1(\beta)} \cos(\theta) \text{ else } \end{cases} \) |
Cdg::WallDistance | Shortest Distance to a collection of vertical and horizontal lines |
Cdg::ZERO | \( f(x) = f(x,y) = f(x,y,z) = 0\) |